Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer simulation of memory cells

08.11.2011
DZNE scientists and their US colleagues have received US$1.5 million in funding to research learning and memory using computer models

As part of a transnational funding initiative entitled ‘German–US Collaboration in Computational Neuroscience’, Stefan Remy, a scientist at the German Centre for Neurodegenerative Diseases (DZNE), and his colleagues Nelson Spruston and Bill Kath of Northwestern University and Stephen Smith of Stanford University have received US$1.5 million in funding to research neuronal memory function.

The project will be funded over three years by the National Institute of Health (NIH) and the German Federal Ministry of Education and Research (BMBF). The aim of the project is to improve understanding of neuronal connections in the hippocampus. The hippocampus is a region in the temporal lobes of the brain that is particularly important for learning and memory. Scientists believe that signal transmission by nerve cells and their functional connections are altered in many diseases of the nervous system, such as Alzheimer’s disease, epilepsy and schizophrenia.

All brain activities – sensory perception, thinking, remembering – are based on the electrical activity of nerve cells. Electrical signals are transmitted from cell to cell at their points of contact, the synapses. As part of the project funding, Remy and his colleagues will develop realistic computer models of individual nerve cells and will use these models to simulate the complex interactions between nerve cells in networks. Such computer simulations are essential to improve our understanding of the cognitive functions of the brain and their malfunction in neurodegenerative diseases.

Nerve cells send long, finely branched extensions, or dendrites, into neighbouring brain regions. A nerve cell receives and processes electrical signals at around 50,000 synapses – neuronal contact points – from upstream cells. To develop a realistic model of nerve cell function, it is important to know the precise distribution of the synapses on the branched neuronal structures. Yet additional factors also play an essential role in signal processing, such as the strength of the synaptic contact or the diameter of the dendrite at the contact point. Remy and his colleagues will study these factors using new methods with a degree of precision not previously achieved. The function of the synapses will be studied using targeted laser pulses which can trigger the release a neurotransmitter, glutamate, from single or multiple synapses. The scientists will also analyse the structure of nerve cells, including all of their branching and synapses, using ultra-modern microscopy and tomography techniques. By using improved computer models that take all relevant functional factors into consideration, researchers hope to generate new hypotheses about brain function which can then be tested experimentally. The researchers will also study how the synaptic strength changes over time. Change in synaptic connections due to neuronal activity, also known as neuroplasticity, is correlated with learning and memory and is often impaired in neurodegenerative diseases.

Contact information:
Dr Stefan Remy
Research Group Leader
German Centre for Neurodegenerative Diseases (DZNE)
c/o University Hospital Bonn
Sigmund-Freud-Strasse 25
53105 Bonn
Germany
E-mail: stefan.remy@dzne.de
Tel.: +49 (0) 228 / 28751-605
Dr Katrin Weigmann
Media and Public Relations Officer
German Centre for Neurodegenerative Diseases (DZNE)
Holbeinstrasse 13–15
53175 Bonn
Germany
E-mail: katrin.weigmann@dzne.de
Tel.: +49 (0) 228 / 43302 263
Mobile: +49 (0) 173 547 1350

Katrin Weigmann | idw
Further information:
http://www.dzne.de/

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

How to control friction in topological insulators

14.10.2019 | Physics and Astronomy

The shelf life of pyrite

14.10.2019 | Earth Sciences

Shipment tracking for "fat parcels" in the body

14.10.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>