Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer simulation of memory cells

08.11.2011
DZNE scientists and their US colleagues have received US$1.5 million in funding to research learning and memory using computer models

As part of a transnational funding initiative entitled ‘German–US Collaboration in Computational Neuroscience’, Stefan Remy, a scientist at the German Centre for Neurodegenerative Diseases (DZNE), and his colleagues Nelson Spruston and Bill Kath of Northwestern University and Stephen Smith of Stanford University have received US$1.5 million in funding to research neuronal memory function.

The project will be funded over three years by the National Institute of Health (NIH) and the German Federal Ministry of Education and Research (BMBF). The aim of the project is to improve understanding of neuronal connections in the hippocampus. The hippocampus is a region in the temporal lobes of the brain that is particularly important for learning and memory. Scientists believe that signal transmission by nerve cells and their functional connections are altered in many diseases of the nervous system, such as Alzheimer’s disease, epilepsy and schizophrenia.

All brain activities – sensory perception, thinking, remembering – are based on the electrical activity of nerve cells. Electrical signals are transmitted from cell to cell at their points of contact, the synapses. As part of the project funding, Remy and his colleagues will develop realistic computer models of individual nerve cells and will use these models to simulate the complex interactions between nerve cells in networks. Such computer simulations are essential to improve our understanding of the cognitive functions of the brain and their malfunction in neurodegenerative diseases.

Nerve cells send long, finely branched extensions, or dendrites, into neighbouring brain regions. A nerve cell receives and processes electrical signals at around 50,000 synapses – neuronal contact points – from upstream cells. To develop a realistic model of nerve cell function, it is important to know the precise distribution of the synapses on the branched neuronal structures. Yet additional factors also play an essential role in signal processing, such as the strength of the synaptic contact or the diameter of the dendrite at the contact point. Remy and his colleagues will study these factors using new methods with a degree of precision not previously achieved. The function of the synapses will be studied using targeted laser pulses which can trigger the release a neurotransmitter, glutamate, from single or multiple synapses. The scientists will also analyse the structure of nerve cells, including all of their branching and synapses, using ultra-modern microscopy and tomography techniques. By using improved computer models that take all relevant functional factors into consideration, researchers hope to generate new hypotheses about brain function which can then be tested experimentally. The researchers will also study how the synaptic strength changes over time. Change in synaptic connections due to neuronal activity, also known as neuroplasticity, is correlated with learning and memory and is often impaired in neurodegenerative diseases.

Contact information:
Dr Stefan Remy
Research Group Leader
German Centre for Neurodegenerative Diseases (DZNE)
c/o University Hospital Bonn
Sigmund-Freud-Strasse 25
53105 Bonn
Germany
E-mail: stefan.remy@dzne.de
Tel.: +49 (0) 228 / 28751-605
Dr Katrin Weigmann
Media and Public Relations Officer
German Centre for Neurodegenerative Diseases (DZNE)
Holbeinstrasse 13–15
53175 Bonn
Germany
E-mail: katrin.weigmann@dzne.de
Tel.: +49 (0) 228 / 43302 263
Mobile: +49 (0) 173 547 1350

Katrin Weigmann | idw
Further information:
http://www.dzne.de/

More articles from Awards Funding:

nachricht Ultrasound Connects
13.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Improving the understanding of death receptor functions in cells
07.11.2018 | Goethe-Universität Frankfurt am Main

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>