Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer (r)evolutionises architecture

31.01.2012
GENTS MAKES AN IMPRESSION: AUSTRIAN BUILDING AWARD GOES TO STRUCTURAL DESIGN TOOL

For the first time, new types of complex load-bearing structures can now be both designed and calculated using a single computer programme. This has become possible thanks to the new software "GENTs", developed as part of a project sponsored by the Austrian Science Fund (FWF).

The software combines evolutionary optimisation methods and computer-based calculation tools for the first time to create an intuitive tool for architects and engineers. This combination enables the conception of light, flexible and resource-efficient load-bearing structures out of irregular shapes. The innovative potential of the new software also impressed the jury of the Austrian Building Award and it was voted winner of the "Research and Development" category.

Beam structures support architectural masterpieces. Whether Calatrava, Foster or Coop Himmelb(l)au - those who aim high in the world of architecture inevitably need to rely on these for roofs, bridges or towers. Up to now, however, architectural creativity in this area has been subject to certain limitations, as it was deemed the more regular the structure´s design, the more stable it would be. The software "GENTs" now overturns this idea, allowing irregular structures to be created which still provide a high level of stability and efficiency. This FWF project has thereby laid the foundation for a whole new range of design processes and solutions. This development achievement was officially acknowledged when the software was honoured with the 2011 Austrian Building Award.

DESIGN (R)EVOLUTION
Thanks to its innovative combination, the software "GENTs - Generic Exploration and Navigation Tool for Structures" enables a completely new approach to designing load-bearing structures. "This means we can now calculate irregular structures and come up with designs without being bound to particular support structure types or schemes. GENTs combines countless variations of individual structural elements which can in turn be mutated and recombined until the most effective solution is identified. The quantity of material included in the calculation is precisely sufficient to ensure stability, enabling the creation of particularly light structures," explains project leader Prof. Klaus Bollinger of the Institute of Architecture at the University of Applied Arts Vienna. The key parameters that the programme takes into account during its calculations are the shape, position and function of each element of the support structure.
INTELLIGENT USE OF FORCES
Until now, the design of beam structures only allowed for the channelling of forces applied by pressure and tensile load. This led to a conventional canon of various framework typologies which were all based on triangles as basic design units, which thereby all had a high degree of regularity in common. Thanks to GENTs, bending moments can now also be factored into the design process, together with pressure and tensile load. As a result, the design no longer starts out from a simplified systematisation, but can simulate the entire complex interaction of the individual beam elements, allowing an expansion of the design options previously limited to basic triangular units. How exactly this structural optimisation works was demonstrated in extensive series of tests with up to 2.5 million calculated structures. GENTs-generated support structures show the same load-bearing capacity and deformation as traditional ones, but are up to 15 percent lighter than their veteran "rivals".

The realisation of a design based on this optimisation can now be seen at the Airail Center Frankfurt. Here, a bridge is being built for a mini-metro based on a GENTs design, with the calculative possibilities for structural optimisation, allowing the creation of a dynamic appearance and function. The appearance of the irregular, sinuous design supports the movement of the train as it passes through the bridge. "This design process," says project collaborator DI Arne Hofmann, "would have been inconceivable without the automated calculation and analysis provided by GENTs."

All in all, the GENTs programme, developed within the framework of an FWF project, means closer collaboration between architects and structural planners. It is therefore hardly surprising that the project team headed by Prof. Bollinger, DI Hofmann and DIDr. Preisinger, recently won the Austrian Building Award for Research and Development. The prize money of EUR 10.000 might also be seen as recognition of the importance of investment in basic research, which in this case is contributing significantly to revolutionising building culture.

Scientific contact:
DI Arne Hofmann
University of Applied Arts Vienna
Oskar Kokoschka-Platz 2
1010 Vienna, Austria
T +43 / (0)1 / 955 54 54 14
E ahofmann@bollinger-grohmann-schneider.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / (0)1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations für
Forschung und Bildung
Mariannengasse 8
1090 Vienna, Austria
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Katharina Schnell | PR&D
Further information:
http://www.fwf.ac.at

More articles from Awards Funding:

nachricht ESJET printing technology for large area active devices awarded
11.04.2019 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Pushing digital process optimization
02.04.2019 | Technische Universität Chemnitz

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>