Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brupbacher Prize goes to B. Vogelstein & J. Hoeijmakers for research on colorectal and skin cancer

17.02.2011
Today, the Charles Rodolphe Brupbacher Prize for Cancer Research 2011 goes to two researchers who have contributed to better understanding of the genetics underlying the growth of tumors.

Oncologist Bert Vogelstein has demonstrated how sequential accumulation of mutations leads to colorectal cancer, and Jan H. Hoeijmakers has conducted breakthrough research in xeroderma, a hereditary disease causing skin cancer.

For the tenth time, the Charles Rodolphe Brupbacher Prize will be awarded in conjunction with an international symposium. The prize of 100,000 Swiss francs for each scientist, is one of the world’s most prestigious honors in cancer research. The prize is awarded every two years to investigators who have made outstanding contributions to oncology. The symposium will also honor five junior researchers who will receive a Young Investigator Award.

This year's Brupbacher Prize goes to Prof. Bert Vogelstein of the John Hopkins University in Baltimore (USA) and to Prof. Jan. H. Hoeijmakers of Erasmus University, Rotterdam (Netherlands). The findings of both researchers have contributed greatly to the understanding of the genetic basis of tumor growth. Bert Vogelstein's main area of research is colorectal cancer, Jan Hoeijmakers' is skin cancer. The particular significance of their findings lies in their general relevance: Cancer of the colon and rectum is closely linked to lifestyle of Western populations and is the second-leading cause of cancer-related deaths in Europe. Hoeijmakers’ findings do not only shed light on skin tumors, but also on premature aging.

Bert Vogelstein

Bert Vogelstein ranks among the most-quoted scientists in the field of biomedicine. He is best-known for his groundbreaking work on the genesis of cancer of the colon. Tumors in the large intestine (colon) lend themselves particularly well to analysis because their progression from a benign growth to a malignant tumor can be clinically observed by means of colonoscopies.

Vogelstein has observed that initial, small accumulations of atypical cells are caused by a mutation of the APC gene, a tumor-suppressor gene that controls cell division. The mutation of the APC gene is also responsible for inherited familial adenomatous polyposis, a disease characterized by a great number of polyps in the intestinal wall. If not removed, these polyps can develop into colon cancer.

Additional mutations activate genes coding for growth factors (oncogenes).as well as in other tumor suppressor genes. All of these DNA mutations mediate a slow but steady growth from initially small, then larger benign polyps that then progress into a carcinoma. Although it takes an average of 17 years for a small polyp to develop into a carcinoma, the process then accelerates, leading typically within two more years to a highly malignant carcinoma that metastasizes to regional lymph nodes and distant organs.

Vogelstein's findings on the sequential accumulation of mutations and tumor growth have received wide-spread recognition and provide the basis for prevention, early diagnosis and treatment of colorectal cancer. Vogelstein has recently begun analyzing entire cancer genomes, i.e. the sum of all genes in a cell. Understanding the genetic make-up of a tumor provides the basis for personalized tumor therapy, a major goal in clinical oncology.

Jan H. Hoeijmakers

Jan Hoeijmakers has made an outstanding contribution by elucidating the molecular basis of hereditary diseases caused by defective DNA repair. There are multiple pathways for the repair of damaged DNA. If left unrepaired, this increases the risk of several diseases, including cancer. Dr. Hoeijmakers has performed innovative research on xeroderma pigmentosum, a hereditary skin disease that is characterized by extreme sensitivity to UV rays and the development of multiple, often malignant tumors in skin regions exposed to sunlight. Ultraviolet rays cause damage involving chemical links between coding DNA bases, particularly thymine. During cell division and in the absence of efficient repair, this leads to permanent mutations in daughter cells. Patients affected by xeroderma pigmentosum demonstrate a reduced DNA repair capacity.

Hoeijmakers identified and characterized multiple genes involved in the repair process. He was able to show that certain forms of limited DNA repair capacity can bring about the exact opposite of a tumor, namely premature aging.

A complex DNA repair system ensures the stability of our genome. Jan Hoeijmakers has earned international recognition for having identified key aspects of the molecular basis of DNA repair and the role it plays in both, the development of tumors and in premature aging.

The foundation:
The Charles Rodolphe Brupbacher Foundation was founded in 1991 by Mme. Frédérique Brupbacher in memory of her husband, Charles Rodolphe Brupbacher. The foundation is affiliated with the Faculty of Medicine of the University of Zurich. More information on the foundation is available at www.brupbacher-stiftung.ch
Contact information:
Prof. Paul Kleihues
C.R. Brupbacher Stiftung
c/o Dean's Office, Faculty of Medicine
University of Zurich
Phone: +41 79 738 34 72
E-Mail: brupbacher-stiftung@dekmed.uzh.ch

Beat Müller | idw
Further information:
http://www.mediadesk.uzh.ch/articles/2011/brupbacher-preis-2011_en.html
http://www.mediadesk.uzh.ch/articles/2011/brupbacher-preis-2011.html

More articles from Awards Funding:

nachricht ESJET printing technology for large area active devices awarded
11.04.2019 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Pushing digital process optimization
02.04.2019 | Technische Universität Chemnitz

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>