Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast cancer advance wins $7.4m US award for Austrian Research Institute

22.10.2012
A new approach to possible future prevention of breast cancer and slowing the spread of tumours has won Austrian researcher Josef Penninger, director of the Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) in Vienna, a $7.4 million innovator’s award to continue his research, from the USA’s Congressionally Directed Medical Research Program.

The innovator’s award recognises Josef Penninger’s work in identifying a key molecular pathway how hormone replacement therapies and contraceptive pills can lead to breast cancer. His team provided the first genetic proof that a protein called RANKL is the master regulator of bone loss, which has contributed to the development of a novel drug already approved for the treatment of osteoporosis and skeletal related events in multiple cancers.

He was also the first to discover that RANKL not only regulates bone loss but is absolutely essential to enable sex hormone driven lactation in pregnant females, a finding that could explain further the connection between sex hormones and bone loss. Based on these groundbreaking findings, Penninger’s group went on to show that RANKL is indeed a missing link between sex hormones, in particular the sex hormone progesterone, and breast cancer, leading to the hypothesis that RANKL is a key driver of breast cancer initiation.

In addition, Penninger’s group has developed entirely novel genetics tools, so-called haploid stem cells, to quickly assess the function of specific genes that cause breast cancer and help tumours to spread. “This is the next step in the post genome era of cancer”, says Prof Josef Penninger. “We will use our new technologies to rapidly check the function of hundreds or even thousands of human breast cancer gene candidates”. The Austrian researchers expect to verify new breast cancer pathways, which they hope will quickly lead to a major impact in preventing and treating the disease.

Supported by the $7.4 million award, Josef Penninger intends to further use this knowledge to develop a new diagnostic method that helps in making predictions concerning the chances that any patient will develop breast cancer. At risk patients will then be able to start preventative treatment using the existing RANK ligand-blocking medicines. Josef Penninger adds: “If our experimental data could be extrapolated to humans, which is what we strongly believe, then we might have an entirely novel way of early breast cancer detection and, since RANKL inhibition is already used in patients, we even would have a medicine within immediate reach that could be used to possibly prevent the disease in those women at high risk”.

ENDS

IMBA:
The Institute of Molecular Biotechnology (IMBA) combines fundamental and applied research in the field of biomedicine. Interdisciplinary research groups address functional genetic questions, particularly those related to the origin of disease. IMBA is a subsidiary of the Austrian Academy of Sciences, the leading organization promoting non-university academic basic research in Austria. Earlier this year IMBA was voted as second to top international workplace for postdoctoral researchers, by readers of the US based and online life sciences magazine, The Scientist.
Contact:
Evelyn Devuyst
IMBA Communications
Phone: +43 1 79730 3626
evelyn.devuyst@imba.oeaw.ac.at
References:
Schramek et al. (2010). Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature. 468(7320):98-102
IMBA press release from 2010: „Researchers find how HRT and the Pill can lead to breast cancer and suggest possible treatment“

http://www.imba.oeaw.ac.at/uploads/media/presstext100929-breast_cancer.pdf

Innovator Award:
Josef Penninger was awarded with the Innovator Award for his project “Novel Approaches to Breast Cancer Prevention and Inhibition of Metastases” (contract number W81XWH-12-1-0093) through the US Department of Defense. Congressionally Directed Medical Research Program: http://cdmrp.army.mil/bcrp/

Evelyn Devuyst | idw
Further information:
http://www.oeaw.ac.at

More articles from Awards Funding:

nachricht Muscle Growth in the Computer: International Team Wants to Unravel the Formation of Myofibrils
13.06.2018 | Technische Universität Dresden

nachricht Innovation Award of the United Nations Environment Programme for PhD Student from ZMT
22.03.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>