Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BMBF funding for diabetes research on pancreas chip

08.02.2017

Germany's Federal Ministry of Education and Research (BMBF) will be funding the new "PancChip" consortium for the next three years. This group will be coordinated at the Helmholtz Zentrum München, where also some of its work is carried out. The objective is further development of the culture and differentiation of stem cells into functional beta cells on a chip, and consequently the resolution of issues regarding the formation and treatment of diabetes and other pancreatic disorders. The total funding amounts to 1.5 million euros and will be distributed equally among the three partner institutions.

In various types of diabetes, the insulin-producing beta cells in the pancreas are destroyed. Science is focusing more and more on replacement and regeneration therapies as possible treatments for this case. The idea behind this: To use stem cells, which are cells that can develop into other types of cells, as a source for insulin-producing beta cells.


Lab on a chip: the chips on which the pancreatic cells are cultivated have the size of a thumb tip.

Copyright: Matthias Meier, University of Freiburg

"Unfortunately, however, our understanding of the signals and factors that regulate stem cell programming is still not sufficient," explains Prof. Dr. Heiko Lickert, director of the Institute of Diabetes and Regeneration Research (IDR) at the Helmholtz Zentrum München and holder of the Chair of Beta Cell biology at the Technical University of Munich (TUM). Together with Dr. Matthias Meier from the University of Freiburg, he will be coordinating and leading the project. Also taking part in the project is Prof. Dr. Alexander Kleger from the Department of Internal Medicine at the Ulm University Medical Center.

Together, the scientists want to develop a number of cell culture models in a chip format in order to investigate which factors regulate the stem cells' development into endocrine and exocrine* cell lines, and how this regulation takes place. The cells grow on a substrate (the chip) and the fluids above this (a culture medium with and without additional substances) are regulated by means of miniaturized pneumatic valves. Also included are analysis methods in order to provide comprehensive documentation of the cells' reaction.

In the next step, a 3D model system is to generate so-called organoids, or mini-organs, in order to allow an examination of disease processes. "Using this 'organoid clinic', we will be able to test active substances under standardized conditions and examine the reaction of patient material to therapy options," states project leader Lickert. The Munich researchers are going to specialize in modelling diabetes, in particular, while the focus in Ulm is to be on research on chronic inflammation of the pancreas (pancreatitis).

Over the long term, the project is expected to pay off in three directions: Scientifically, the consortium would like to explore the biology behind pancreatic diseases and identify possible points of attack. Clinically, the work will focus on developing beta cell replacement therapy and consequently in the long term, on healing diabetes mellitus. And last but not least, the project should also generate an economic benefit: Ultimately** it should be possible for a start-up company to utilize the research results. Conceivable options here would be the chip itself for possible production of beta cells from stem cells, a high-throughput screening platform for chemotherapeutics to check the efficacy on pancreatic cells, and an innovative instrument for individualized preliminary testing of therapy options on patient material.

Further Information

* While endocrine cells release their products (such as the messenger insulin) into the blood, exocrine cells secrete substances “outwards”. In the context of the pancreas, these substances are often the digestive enzymes, which are released into the duodenum.

** However, the researchers do not want to give rise to exaggerated expectations with regard to the first successes. They estimate that it will take roughly ten years until the results can be utilized. The term initially runs from 1 February 2017 until 31 January 2020.

Background:
Technically, the project is based on a microfluidic cell culture chip platform. This means that the cells grow on a substrate (the chip), and the fluids above this (a culture medium with and without additional substances) are regulated by means of miniaturized pneumatic valves. The so-called microfluidic large-scale integration technology (mLSI) will then make it possible to characterize the cells appropriately. For example, this comprises simultaneous analyses of various proteins in and around the cell (multiplex in situ protein analysis) including their interactions ("proximity ligation assay"), live cell imaging, the tracking of individual cells during differentiation, and much more.

Related Articles:
New Approach for Regenerative Therapy
https://www.helmholtz-muenchen.de/en/press-media/press-releases/all-press-releas...
Big Data for small cells – a new tracking and quantification tool for single cells
https://www.helmholtz-muenchen.de/en/press-media/press-releases/all-press-releas...
Stem cell research: New, major EU research grant focused on stem cell-based treatment of Diabetes
https://www.helmholtz-muenchen.de/en/press-media/press-releases/all-press-releas...

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The research activities of the Institute of Diabetes and Regeneration Research (IDR) focus on the biological and physiological study of the pancreas and/or the insulin producing beta cells. Thus, the IDR contributes to the elucidation of the development of diabetes and the discovery of new risk genes of the disease. Experts from the fields of stem cell research and metabolic diseases work together on solutions for regenerative therapy approaches of diabetes. The IDR is part of the Helmholtz Diabetes Center (HDC). http://www.helmholtz-muenchen.de/idr

Contact for the media:
Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-mail: presse@helmholtz-muenchen.de

Scientific Contact at Helmholtz Zentrum München:
Prof. Dr. Heiko Lickert, Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Diabetes and Regeneration Research, Parkring 11, 85748 Garching - Tel. +49 89 3187 3867, E-mail: heiko.lickert@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

More articles from Awards Funding:

nachricht Million funding for Deep Learning project in Leipzig
15.08.2018 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Advanced Grant for Grain Boundary Phase Transformations
06.08.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>