Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Award for a brilliant copper trick

16.06.2010
Polish-American polymer scientist Krzysztof Matyjaszewski receives the €10,000 Gutenberg Lecture Award of the Graduate School of Materials Science in Mainz (MAINZ)

The 2010 Gutenberg Lecture Award was today bestowed upon the Polish-American scientist Professor Dr Krzysztof Matyjaszewski for his ground-breaking developments in polymer production and processing. Matyjaszewski is one of the world’s most highly regarded chemists. He both teaches and pursues research at the Carnegie Mellon University in Pittsburgh, USA.

The Gutenberg Lecture Award, worth a total of € 10,000, has been conferred on Matyjaszewski primarily because of his development of a new process for the synthesis of polymers, allowing synthetic materials to be tailor-made for specific uses. Matyjaszewski was able to control a large number of hitherto uncontrolled polymerizations by using copper catalyst systems. The resultant materials have a vast range of applications - as surface finishes and adhesives, in printing dyes and cosmetics, and they are even employed in the fields of medicine and pharmacy, being used, for example, as coatings for stents. "Professor Matyjaszewski's process has not only revolutionized polymer synthesis but has had considerable influence on other fields of research. One consequence is that he has become one of the most frequently cited chemists," explains Professor Claudia Felser, Director of the Graduate School of Excellence MAINZ - Materials Science in Mainz, which awards the prize annually.

Krzysztof Matyjaszewski immigrated to the USA in 1985 where he developed his "Atom Transfer Radical Polymerization" process (ATRP) in the early 1990s contemporaneously with the parallel breakthroughs made by the Japanese researcher Mitsuo Sawamoto. The ATRP process is a method of controlled radical polymerization which by means of mostly copper-based reagents allows a high level of control in the assembly of single components. Thus, the build-up of the resulting synthetic molecules can be accurately fine-tuned. Using ATRP, polymers can be constructed that are superior to those that have been available to date in terms of properties, potential range of applications and capabilities. It has now even become possible to create surfaces with an antibacterial potential and these play an important role in certain areas, such as medicine (prosthetics) and the packaging industry. Today hundreds of chemists worldwide work with the Matyjaszewski’s method. His work and discoveries have not only stimulated further academic research, but have also opened up new horizons for the industry.

Krzysztof Matyjaszewski obtained a degree in chemistry at the Technical University of Moscow in 1972 and was awarded his PhD by the Polish Academy of Sciences in 1976. He has been based at Carnegie Mellon University in Pittsburgh, USA, since 1985, where he now heads the Center for Macromolecular Engineering. His consortium is responsible for over 600 publications listed in the Web of Science and there are more than 34,000 entries for these in the citation index. His body of publications currently makes him one of the three most frequently cited polymer chemists in the world. There are also nearly 80 patents that bear his name. Matyjaszewski holds honorary doctorates conferred by universities in France, Russia, Poland, Greece, and Belgium, and he is a member of the Polish Academy of Sciences. He received the Foundation of Polish Science Award, Poland's most prestigious science award, in 2004, and the Presidential Green Chemistry Challenge Award of the US Environmental Protection Agency EPA in 2009. He had previously received the Humboldt Award for Senior U.S. Scientists in 1999, had been appointed to the Elf Chair of the French Academy of Sciences in 1998, and won the U.S. Presidential Young Investigator Award in 1989.

Matyjaszewski has an established cordial relationship with Mainz, having already participated in several academic projects here. He is also closely involved with polymer research workgroups at Mainz University and the Max Planck Institute for Polymer Research, where he has been a member of the Scientific Advisory Board since 2009. Prof. Gerhard Wegner, in his encomium on the prize winner, stated that "The conferring of the 2010 Gutenberg Lecture Award on Professor Matyjaszewski will help strengthen and extend the links between materials scientists associated with the Graduate School of Materials Science in Mainz and this pre-eminent and gifted scientist who is internationally renowned and extraordinarily influential."

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/13630.php
http://www.mainz.uni-mainz.de/

Further reports about: ATRP Materials Science Merit Award Science TV

More articles from Awards Funding:

nachricht LandKlif: Changing Ecosystems
06.07.2018 | Julius-Maximilians-Universität Würzburg

nachricht “Future of Composites in Transportation 2018”, JEC Innovation Award for hybrid roof bow
29.06.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>