Arkansas Receives $3.3 Million Grant From National Science Foundation

The award, made possible by the American Recovery and Reinvestment Act of 2009, will enable researchers at the University of Arkansas and other colleges and universities in the state to build and support cyberinfrastructure and to train students and workers in information-technology systems, tools and services.

The grant, titled CI-TRAIN, or Cyberinfrastructure for Transformational Scientific Discovery in Arkansas and West Virginia, is part of a broader award to create a research consortium between the two states, which have researchers specializing in high-performance computing, visualization and modeling. At the University of Arkansas specifically, the federal funding will enhance supercomputing resources at the Arkansas High Performance Computing Center, which supports research in computational science, nano- and ferroelectric materials, multiscale visualization and many other research projects that require massive data storage.

“Beyond the critically important goal of helping scientists discover, understand and solve complex problems that affect our lives, this award will enhance undergraduate education, provide training for information-technology workers and support statewide initiatives such as the Arkansas Research and Education Optical Network,” said Amy Apon, professor of computer science and computer engineering, director of the computing center and principal investigator for the project.

In addition to Apon, other University of Arkansas researchers involved in the project are Fred Limp, University Professor, anthropology; Laurent Bellaiche, physics professor; and Douglas Spearot, assistant professor of mechanical engineering. Srinivasan Ramaswamy, professor and chair of the department of computer science at the University of Arkansas at Little Rock is also a co-principal investigator.

From a research perspective, the overall goal of the project is to create a nationally competitive environment for computation and visualization – techniques for creating images, diagrams and animations of scientific concepts and processes – and to develop both hardware and software to create and capture data that will enable a broad range of research in science and engineering. The partnership will include a substantial shared cluster – linked computers operating as a single computer – hosted by the Arkansas High Performance Computing Center.

Specifically, resources provided by the funding will enable research in:

• multiscale geomatics – gathering, storing, processing and delivery of geographic information – and geosciences,
• nanosience, including multiferronics and simulation of defects in nanocrystalline materials,
• real-time image-guided surgery,
• particle-based physics simulations of materials and processes,
• plant secondary cell wall reconstruction,
• scanning optical microscopy, and
• performance models of large-scale clusters that can be applied to large-scale resources.

Research in these areas will lead to design and improvement of devices such as actuators and sensors and products in visualizations, geosciences and virtual world. It will also improve approaches to real-time, image-guided surgery to enable safe obliteration of solid tumors anywhere in the human body. Finally, innovative studies that explore the three-dimensional structures of plant cell walls will assist in understanding how to cost-effectively recover components of the cell wall for use in bio-based product development.

As mentioned above, another primary goal of the funding is to provide education and workforce training in cyberinfrastructure and information technology. This will be accomplished through a network of faculty and professional staff – called Cyberinfrastructure Campus Champions. At each institution, these people will work to broaden the user base and expand operational support and use of the infrastructure.

“The program will provide training for workers who provide operational support for cyberinfrastructure resources, such as supercomputers and high-end visualization tools,” Apon said. “It will also expand integration with existing technology education programs at more than 200 high schools.”

Other participating Arkansas institutions include the University of Arkansas for Medical Sciences, University of Arkansas at Pine Bluff and Arkansas State University. All Arkansas Research and Education Optical Network member institutions will benefit from the project.

Limp holds the Leica Geosystems Chair in Geospatial Imaging and is director of the University of Arkansas Center for Advanced Spatial Technologies. Bellaiche holds the Twenty-First Century Professorship in Nanotechnology and Science Education.

More information about the NSF grant can be found at http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0918970. For more information about the Arkansas High Performance Computing Center, visit http://hpc.uark.edu/index.html. For more information about the Arkansas Center for Advanced Spatial Technologies, visit http://www.cast.uark.edu/.

Media Contact

Matt McGowan Newswise Science News

More Information:

http://www.uark.edu

All latest news from the category: Awards Funding

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors