Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

6.7 Million Euros for Microsystems Engineering Project

05.02.2019

"PROMYS" project researchers receive funds to develop miniaturized sensors for biomedical devices

Germany's Federal Ministry of Education and Research (BMBF) is providing more than 6.7 million euros to support the "Processes and Materials for More-than-Moore Electronic Systems" (PROMYS) project until 2021.


PROMYS project researchers are developing new microsystem concepts for use in medical monitoring. Photo: University of Freiburg

PROMYS research is aimed at developing particularly small microsystems that are mainly intended for use in bioanalytical devices.

The Department of Microsystems Engineering (IMTEK) and the Department of Sustainable Systems Engineering (INATECH) of the University of Freiburg are working in cooperation with the Fraunhofer Institute for Applied Solid State Physics (IAF) to achieve their objectives.

Prof. Dr. Gerald Urban of IMTEK is the coordinator of the PROMYS project.

Integrated microsystems will play a decisive role as digitization progresses and transforms society. When applied in healthcare, for example, these systems pave the way for new, technical developments that will allow continuous medical monitoring of elderly, disabled, or sick people in order to provide them with rapid aid when they need it.

To work properly, electronic systems for medical use need to detect biological parameters in implants or in wearables as for example in smart watches.

New, compact microsystems offer the opportunity to make sensors more efficient, tolerable, and comfortable for those who use them. Up to now, these patients have needed to go to the doctor for many tests.

This technology will allow the same task to be achieved with new types of analyses that can be carried out at home. PROMYS project researchers will integrate a range of semiconductor technologies into components in order to greatly reduce system size, use new functional materials, and provide a three-dimensional structure.

Applications for other sectors, such as agriculture or for "smart homes," are expected to evolve from this project.

PROMYS is one of twelve projects in Germany funded by the BMBF as part of the "Forschungslabore Mikroelektronik Deutschland" (ForLab) (Microsystems Research Laboratory – Germany) project. Within the scope of ForLab, the ministry has made available a total of 50 million euros for microsystems research. Prof. Dr. Thomas Mikolajick of Dresden's Technical University (TU Dresden) is coordinating work at all twelve sites.

The Parliamentary State Secretary to the BMBF, Thomas Rachel, is presenting grant certificates to the research laboratories on 5 February 2019 in Aachen. Rachel emphasizes the key role Germany's institutes of higher education have to play in the sustainability of the country's innovation system.

"By supporting Germany's microsystems engineering laboratories, we are investing in the future. Maintaining technological sovereignty in the "Digital Age" requires top-flight equipment for first-class research in industry and academe as well," said Rachel.

Caption:
PROMYS project researchers are developing new microsystem concepts for use in medical monitoring. Photo: University of Freiburg

Contact:
Prof. Dr. Gerald Urban
Department of Microsystems Engineering (IMTEK)
University of Freiburg
Tel.: 0761/203-7260
E-Mail: urban@imtek.de

Originalpublikation:

https://www.pr.uni-freiburg.de/pm-en/press-releases-2018/6-7-million-euros-for-m...

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht Decoding cell communication
13.06.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht ESJET printing technology for large area active devices awarded
11.04.2019 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Toward molecular computers: First measurement of single-molecule heat transfer

22.07.2019 | Information Technology

First impressions go a long way in the immune system

22.07.2019 | Health and Medicine

New Record: PLQE of 70.3% in lead-free halide double perovskites

22.07.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>