Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Widespread use on the horizon - Thermoelectrics conference breaks all records

17.08.2009
From 26th to 30th July, 2009, about 600 experts from 40 different countries met in Freiburg for the by far greatest thermoelectrics conference of all times.

The 28th International / 7th European Conference on Thermoelectrics yielded important results, e.g., in the discussion of how thermoelectric generators can be further improved. The path leading to widespread use of waste heat recycling is clearly laid out for thermoelectrics.

In his opening speech at the conference, Baden-Württemberg's minister of economic affairs, Ernst Pfister, emphasized the economic and environmental benefits of thermoelectrics in particular.

"New technologies for the utilization of unused heat fractions at least in part are in dire need", Pfister said in Freiburg, alluding to the fact that more than 60 percent of all consumed fossil primary energy are dissipated unused as heat energy. According to Pfister, as one of the most promising technologies enabling direct conversion of heat into electricity, thermoelectrics could contribute greatly to more efficient energy handling.

Apart from the conference host, Fraunhofer IPM, both the International and the European Thermoelectric Society can look back on a most successful week. Attracting an attendance of about 600, the event has grown in size and relevance in a way that would have been considered impossible just a few years ago.

Nearly twice the last year's number of experts took the opportunity to exchange views with their colleagues. And the international guests were not only impressed by the conference's scientific part but also by its diverse social program. The event started with a reception hosted by the City of Freiburg in the Historic Merchants' Hall on the Münster square. Halfway through the conference, an excursion into the Black Forest was organized and a gala dinner was held in the concert hall.

Conference highlights

- Materials: Improving material efficiency and recycling of tellurium-containing and therefore very expensive materials continue to be of highest priority.

- Manufacturing: So-called spark plasma sintering - a short-time sintering method similar to hot pressing - is increasingly gaining centre stage for manufacturing thermoelectric modules but also for volume production of thermoelectric devices.

- Refrigeration: Not only reducing fuel consumption provides its share in fighting climatic change. Avoiding CFCs in car air conditioning can also help in a valuable way. Small thermoelectric cooling systems that cool only the passengers rather than the whole car interior could replace conventional air conditioning.

- Waste-heat recycling: Based on vehicle tests with thermogenerators, the automotive industry predicts that efficient thermogenerators in conjunction with sophisticated power management will be able to improve fuel efficiency by around five to seven percent. Diesel and petrol engines make different demands on waste-heat recycling, however. This should be taken into account when optimizing the respective parameters such as, e.g., compression or exhaust gas temperature.

- Exhibition: A prototype car fitted with a thermoelectric generator for waste-heat recovery and presented by the Berlin based company IAV was one of the highlights of the exhibition accompanying the event. The Freiburg based company Micropelt, a spin-off of a Fraunhofer IPM development, presented commercial products for cooling applications and for energy self-sufficient sensor equipment. Apart from waste-heat recovery, generating minute amounts of energy for energy-independent sensors - e.g., for monitoring safety relevant parts such as aircraft shells - constitutes the second major application for thermoelectrics.

The future of thermoelectrics
In recent years, the development of thermoelectric materials has advanced tremendously with the result that widespread use of this technology can be expected in just a few years from now. Improving energy efficiency is a global issue. And thermoelectrics will contribute its share to that.

Assisted by the Federal State, Fraunhofer IPM is planning to establish a research association, "Thermoelectrics Baden-Württemberg", in Freiburg. This association will further accelerate material, module, and systems development and add to the strength of the Location of Germany and, especially, Baden-Württemberg. "Already, Freiburg is an established factor in thermoelectrics", says Harald Böttner, Chairman of the international Conference ICT2009 in Freiburg. "We are receiving a lot of acceptance from all sides. And politics are also willing to help us along our way." This, among other things, includes building a thermoelectrics competence centre on the Fraunhofer IPM's site. Therefore, Freiburg thermoelectrics can look to the future with great expectations and high motivation.

Your contact:
Dr. Harald Böttner
Head of Thermoelectric Systems department
Phone +49 761 8857-121
harald.boettner@ipm.fraunhofer.de
The Fraunhofer Institute for Physical Measurement Techniques IPM develops and implements turn-key optical sensor and imaging systems. In the thermoelectrics field, the institute occupies a leading position in materials research, simulation, and systems design. In thin film technology, Fraunhofer IPM works on materials, production processes, and systems; semiconductor gas sensors form a further field of activity.

Holger Kock | idw
Further information:
http://www.ict2009.its.org
http://www.ipm.fraunhofer.de

More articles from Automotive Engineering:

nachricht The car of the future – sleeper cars and travelling offices too?
18.06.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Self-driving cars for country roads
07.05.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>