Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vibrating Steering Wheel Guides Drivers While Keeping Their Eyes on the Road

25.04.2012
Carnegie Mellon and AT&T Researchers Evaluate Haptic Navigation Aid
A vibrating steering wheel is an effective way to keep a driver's eyes safely on the road by providing an additional means to convey directions from a car's navigation system, researchers at Carnegie Mellon University and AT&T Labs have shown.

The study, one of the first to evaluate combinations of audio, visual and haptic feedback for route guidance, found that younger drivers in particular were less distracted by a navigation system's display screen when they received haptic feedback from the vibrating steering wheel.
For elder drivers, the haptic feedback reinforced the auditory cues they normally prefer.

Though the haptic steering wheel generally improved driver performance and safety, the study findings suggest that simply giving the driver additional sensory inputs isn't always optimal. That's particularly the case for older drivers because the additional sensory feedback can strain the brain's capacity to process it.

Pictured above is the haptic simulator used in the study.

"Our findings suggest that, as navigation systems become more elaborate, it would be best to personalize the sensory feedback system based, at least in part, on the driver's age," said SeungJun Kim, systems scientist in Carnegie Mellon's Human-Computer Interaction Institute (HCII).

The findings will be presented June 21 at the International Conference on Pervasive Computing in Newcastle, England.

Vibrating steering wheels already are used by some car makers to alert drivers to such things as road hazards. But the haptic steering wheel under development by AT&T is capable of unusually nuanced pulsations and thus can convey more information. Twenty actuators on the rim of the AT&T wheel can be fired in any order. In this study, firing them in a clockwise sequence told a driver to turn right, while a counterclockwise sequence signaled a left turn.

"By using these types of vibration cues, we are taking advantage of what people are already familiar with, making them easier to learn," explained Kevin A. Li, a researcher with AT&T's user interface group in Florham Park, NJ.

Kim and fellow HCII scientists have developed methods for measuring the performance, attentiveness and cognitive load of drivers that involve a suite of sensors. For this study, they added the experimental AT&T steering wheel to their driving simulator.
Part of a research thrust of the National Science Foundation-sponsored Quality of Life Technology Center, the researchers were particularly interested in learning whether multi-modal feedback would improve the driving performance of elderly drivers. The number of drivers over the age of 65 is rapidly growing; improving the performance of older drivers despite progressive decay in their vision, hearing and general mobility can help maintain their mobility and independence.

Subjects of the study included 16 drivers ages 16-36 and 17 over the age of 65. In the HCII simulator, these people drove a course that included various traffic lights, stop signs and pedestrians while the researchers monitored their heart rate, pupil size, blink rate, brain wave activity and other measures of attention and cognitive load.

The researchers found that the proportion of time that a driver's eyes were off of the road was significantly less with the combination of auditory and haptic feedback than with the audio and visual feedback typical of most conventional GPS systems - 4 percent less for elder drivers and 9 percent less for younger drivers.
Combining all three modalities - audio, visual and haptic - significantly reduced eye-off-the-road time for the younger drivers, but not the older drivers. Kim said this may have to do with driver preference; self-reports showed older drivers favored audio feedback while younger drivers relied more on visual feedback.

But the researchers also found that combining all three modalities didn't reduce the cognitive workload of older drivers, a result that was in contrast to younger drivers. They concluded designers of navigation systems for older drivers may need to concentrate on reducing the driver's cognitive burden rather than resolving issues regarding divided attention.

"We are very excited about the benefits of adding haptic feedback to traditional audio-visual interfaces," said Anind K. Dey, associate professor in HCII. "In combination with our ability to measure cognitive load, we can not only design interfaces that people like and make them more efficient, but that also allow them to more easily focus on their task at hand."

In addition to Dey, Kim and Li, the research team included Jodi Forlizzi, associate professor in HCII, and Jin-Hyuk Hong, a post-doctoral researcher in HCII. General Motors, the National Science Foundation and the Quality of Life Technology Center sponsored this study.

The Human-Computer Interaction Institute is part of Carnegie Mellon's acclaimed School of Computer Science. Follow the school on Twitter @SCSatCMU.

Byron Spice | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Automotive Engineering:

nachricht The cold-start dilemma
27.02.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Three Autonomous Mini Buses for Karlsruhe
14.05.2019 | FZI Forschungszentrum Informatik

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>