Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vibrating Steering Wheel Guides Drivers While Keeping Their Eyes on the Road

25.04.2012
Carnegie Mellon and AT&T Researchers Evaluate Haptic Navigation Aid
A vibrating steering wheel is an effective way to keep a driver's eyes safely on the road by providing an additional means to convey directions from a car's navigation system, researchers at Carnegie Mellon University and AT&T Labs have shown.

The study, one of the first to evaluate combinations of audio, visual and haptic feedback for route guidance, found that younger drivers in particular were less distracted by a navigation system's display screen when they received haptic feedback from the vibrating steering wheel.
For elder drivers, the haptic feedback reinforced the auditory cues they normally prefer.

Though the haptic steering wheel generally improved driver performance and safety, the study findings suggest that simply giving the driver additional sensory inputs isn't always optimal. That's particularly the case for older drivers because the additional sensory feedback can strain the brain's capacity to process it.

Pictured above is the haptic simulator used in the study.

"Our findings suggest that, as navigation systems become more elaborate, it would be best to personalize the sensory feedback system based, at least in part, on the driver's age," said SeungJun Kim, systems scientist in Carnegie Mellon's Human-Computer Interaction Institute (HCII).

The findings will be presented June 21 at the International Conference on Pervasive Computing in Newcastle, England.

Vibrating steering wheels already are used by some car makers to alert drivers to such things as road hazards. But the haptic steering wheel under development by AT&T is capable of unusually nuanced pulsations and thus can convey more information. Twenty actuators on the rim of the AT&T wheel can be fired in any order. In this study, firing them in a clockwise sequence told a driver to turn right, while a counterclockwise sequence signaled a left turn.

"By using these types of vibration cues, we are taking advantage of what people are already familiar with, making them easier to learn," explained Kevin A. Li, a researcher with AT&T's user interface group in Florham Park, NJ.

Kim and fellow HCII scientists have developed methods for measuring the performance, attentiveness and cognitive load of drivers that involve a suite of sensors. For this study, they added the experimental AT&T steering wheel to their driving simulator.
Part of a research thrust of the National Science Foundation-sponsored Quality of Life Technology Center, the researchers were particularly interested in learning whether multi-modal feedback would improve the driving performance of elderly drivers. The number of drivers over the age of 65 is rapidly growing; improving the performance of older drivers despite progressive decay in their vision, hearing and general mobility can help maintain their mobility and independence.

Subjects of the study included 16 drivers ages 16-36 and 17 over the age of 65. In the HCII simulator, these people drove a course that included various traffic lights, stop signs and pedestrians while the researchers monitored their heart rate, pupil size, blink rate, brain wave activity and other measures of attention and cognitive load.

The researchers found that the proportion of time that a driver's eyes were off of the road was significantly less with the combination of auditory and haptic feedback than with the audio and visual feedback typical of most conventional GPS systems - 4 percent less for elder drivers and 9 percent less for younger drivers.
Combining all three modalities - audio, visual and haptic - significantly reduced eye-off-the-road time for the younger drivers, but not the older drivers. Kim said this may have to do with driver preference; self-reports showed older drivers favored audio feedback while younger drivers relied more on visual feedback.

But the researchers also found that combining all three modalities didn't reduce the cognitive workload of older drivers, a result that was in contrast to younger drivers. They concluded designers of navigation systems for older drivers may need to concentrate on reducing the driver's cognitive burden rather than resolving issues regarding divided attention.

"We are very excited about the benefits of adding haptic feedback to traditional audio-visual interfaces," said Anind K. Dey, associate professor in HCII. "In combination with our ability to measure cognitive load, we can not only design interfaces that people like and make them more efficient, but that also allow them to more easily focus on their task at hand."

In addition to Dey, Kim and Li, the research team included Jodi Forlizzi, associate professor in HCII, and Jin-Hyuk Hong, a post-doctoral researcher in HCII. General Motors, the National Science Foundation and the Quality of Life Technology Center sponsored this study.

The Human-Computer Interaction Institute is part of Carnegie Mellon's acclaimed School of Computer Science. Follow the school on Twitter @SCSatCMU.

Byron Spice | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Automotive Engineering:

nachricht The car of the future – sleeper cars and travelling offices too?
18.06.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Self-driving cars for country roads
07.05.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

3D inks that can be erased selectively

16.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>