Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solid state batteries for tomorrow's electric cars

22.02.2019

As part of a strategic international cooperation program of the Fraunhofer-Gesellschaft, Empa in Dübendorf (CH) and the Fraunhofer Institute for Silicate Research ISC in Würzburg (D) launched a three-year joint research project at the beginning of January to create the basis for a produc-tion-ready next generation of traction batteries for electric cars. In contrast to lithium-ion cells currently in use, these will consist only of solids and will no longer contain flammable liquid electrolytes. The Fraunhofer ISC contributes its know-how in process development and battery cell production and produces the first prototypes.

The worldwide production of state-of-the-art lithium-ion battery cells is currently mainly controlled by Asian companies. If the European automotive industry with its 3.4 million employees was to switch from internal combustion engines to electric drive systems, it would be dependent on traction batteries from Asian manufacturers - if it did not succeed in bringing this key technology to Europe.


Marie Claude Bay and Corsin Battaglia work in a glove box on the solid state batteries of the future.

Empa


At the Fraunhofer ISC, Würzburg, the complete process chain for the production of battery cells is available.

K. Selsam, Fraunhofer ISC

The upcoming technological leap towards solid state batteries offers a huge opportunity for this. Bat-tery cells of this kind do not require flammable liquid electrolytes and thus provide significantly im-proved operational reliability.

They also provide advantages in terms of size and weight, because less complex safety housing is required. In addition, the use of metallic anode material (lithium) instead of the graphite anodes commonly used today in solid-state batteries promises both higher energy density and significantly shorter charging times.

While the individual components (anode, cathode, electrolyte) of future solid state batteries have al-ready been well investigated in the laboratory, the greatest challenge is to integrate them into a stable integrated system.

It is important to achieve a long service life with high performance over as many charging and discharging cycles as possible, in order to outperform today's conventional battery sys-tems. The cooperation between Empa and the Fraunhofer ISC aims to remove the most important tech-nological barriers to the industrial production of solid-state battery cells.

Worldwide partnerships with the best

The project called IE4B ("Interface Engineering for Safe and Sustainable High-Performance Batteries") started on January 1, 2019 and will run for three years as part of the Fraunhofer ICON ("International Cooperation and Networking") funding line. With ICON, the Fraunhofer-Gesellschaft aims to expand the strategic cooperation of its institutes with selected international centers of excellence in various fields. For example, projects with the University of Cambridge and Johns Hopkins University have been initiat-ed to date.

Empa's main focus in the recently launched IE4B project is the development of solid state electrolytes, the production and characterization of thin films with customized electronic properties, and the devel-opment of nanostructured anode materials.

The Fraunhofer ISC with its "Fraunhofer Research and De-velopment Center Electromobility Bavaria" works on lithium conducting polymers as well as on the de-velopment of protective layers of sol-gel materials with specific properties for batteries. In addition, it develops, manufactures and tests prototypes and small series of battery cells.

Industrial companies from Germany and Switzerland have also been involved in the IE4B project from the start as part of a steering group that accompanies the project from an industrial perspective: among others representatives of the chemical industry such as Heraeus (D), mechanical engineering such as the Bühler Group (CH) or Applied Materials (US/D), cell manufacturers such as Varta (D) and technology companies such as ABB (CH).

Reaching the goal in two stages

The aim of the project is to develop a solid-state battery that enables a stable charging and discharg-ing cycle at room temperature and can be charged quickly at the same time. The project is divided into two phases:

The first phase deals with basic aspects and uses battery model systems manufactured us-ing thin-film methods at Empa and ISC. In this first phase, the processes taking place at the interfaces between cathode, solid state electrolyte and anode are to be precisely understood and monitored.

In the second phase, this knowledge will be used to manufacture a functional solid-state cell with the process engineering expertise of the Fraunhofer ISC that will be produced in a small series. "Our com-mon goal is not only to have a better understanding of the interfaces, but also to be able to transfer this knowledge into a manufacturing process. The Fraunhofer and Empa know-how complement each other perfectly," explains Henning Lorrmann, head of the Fraunhofer Research and Development Center for Electromobility in Bavaria (FZEB) at the Fraunhofer ISC.

The two-stage approach offers decisive advantages: As a model system in phase 1, the structure of the thin-film cells is easier to analyze. This allows the best matching electrode and electrolyte combinations to be identified. The more complex three-dimensional structure of larger battery cells in phase 2 is made much easier by the materials that have been matched beforehand.

Pierangelo Gröning, member of Empa’s board of directors, is one of the project coordinators. He em-phasizes the strategic importance: "The structure of the lithium-ion solid state battery is very complex and a major challenge for materials science. Through this cooperation, we are combining outstanding expertise in materials science and process engineering - and this is precisely what is required to suc-cessfully advance the development of the solid state battery."

Editors / Media contact:

Rainer Klose
Empa, Communications
https://www.empa.ch/web/s604
phone +41 58 765 47 33
redaktion@empa.ch

Marie-Luise Righi
Fraunhofer Institute for Silicate Research ISC
https://www.isc.fraunhofer.de/en.html
Head of PR and Communications
phone +49 931 41 00-1 50
righi@isc.fraunhofer.de

Images
You can download highres-images here.
http://plus.empa.ch/images/2019-02-22-ICON-Fraunhofer-ISC/

Wissenschaftliche Ansprechpartner:

Information:

Dr. Corsin Battaglia
Empa, Materials for Energy Conversion
https://www.empa.ch/web/s501
phone +41 58 765 41 31
econversion@empa.ch

Dr. Henning Lorrmann
Head Fraunhofer R&D Center for Electromobility Bavaria (FZEB)
https://www.fzeb.fraunhofer.de/
Fraunhofer Institute for Silicate Research ISC
https://www.isc.fraunhofer.de/en.html
phone +49 931 4100-519
lorrmann@isc.fraunhofer.de

Weitere Informationen:

https://www.isc.fraunhofer.de/en/press-and-media/press-releases/Solid_state_batt...

Dipl.-Geophys. Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

More articles from Automotive Engineering:

nachricht The car of the future – sleeper cars and travelling offices too?
18.06.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Self-driving cars for country roads
07.05.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>