Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-driving cars for country roads

07.05.2018

Most autonomous vehicles require intricate hand-labeled maps, but MIT CSAIL's MapLite enables navigation with just GPS and sensors

Uber's recent self-driving car fatality underscores the fact that the technology is still not ready for widespread adoption. One reason is that there aren't many places where self-driving cars can actually drive. Companies like Google only test their fleets in major cities where they've spent countless hours meticulously labeling the exact 3D positions of lanes, curbs, off-ramps and stop signs.


Uber's recent self-driving car fatality underscores the fact that the technology is still not ready for widespread adoption. One reason is that there aren't many places where self-driving cars can actually drive. Companies like Google only test their fleets in major cities where they've spent countless hours meticulously labeling the exact 3D positions of lanes, curbs, off-ramps and stop signs.

Credit: MIT CSAIL

Indeed, if you live along the millions of miles of U.S. roads that are unpaved, unlit or unreliably marked, you're out of luck. Such streets are often much more complicated to map, and get a lot less traffic, so companies are unlikely to develop 3D maps for them anytime soon. From California's Mojave Desert to Vermont's White Mountains, there are huge swaths of America that self-driving cars simply aren't ready for.

One way around this is to create systems advanced enough to navigate without these maps. In an important first step, a team from MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) has developed MapLite, a new framework that allows self-driving cars to drive on roads they've never been on before without 3D maps.

MapLite combines simple GPS data that you'd find on Google Maps with a series of sensors that observe the road conditions. In tandem, these two elements allowed the team to autonomously drive on multiple unpaved country roads in Devens, Massachusetts, and reliably detect the road more than 100 feet in advance. (As part of a collaboration with the Toyota Research Institute, researchers used a Toyota Prius that they outfitted with a range of LIDAR and IMU sensors.)

"The reason this kind of 'map-less' approach hasn't really been done before is because it is generally much harder to reach the same accuracy and reliability as with detailed maps," says CSAIL graduate student Teddy Ort, who was a lead author on a related paper. "A system like this that can navigate just with on-board sensors shows the potential of self-driving cars being able to actually handle roads beyond the small number that tech companies have mapped."

The paper, which will be presented in May at the International Conference on Robotics and Automation (ICRA) in Brisbane, Australia, was co-written by MIT professor Daniela Rus and PhD graduate Liam Paull, who is now an assistant professor at the University of Montreal.

How it works

For all the progress that has been made with self-driving cars, their navigation skills still pale in comparison to humans'. Consider how you yourself get around: if you're trying to get to a specific location, you probably plug an address into your phone and then consult it occasionally along the way, like when you approach intersections or highway exits.

However, if you were to move through the world like most self-driving cars, you'd essentially be staring at your phone the whole time you're walking. Existing systems still rely heavily on maps, only using sensors and vision algorithms to avoid dynamic objects like pedestrians and other cars.

In contrast, MapLite uses sensors for all aspects of navigation, relying on GPS data only to obtain a rough estimate of the car's location. The system first sets both a final destination and what researchers call a "local navigation goal", which has to be within view of the car. Its perception sensors then generate a path to get to that point, using LIDAR to estimate the location of the road's edges. MapLite can do this without physical road markings by making basic assumptions about how the road will be relatively more flat than the surrounding areas.

"Our minimalist approach to mapping enables autonomous driving on country roads using local appearance and semantic features such as the presence of a parking spot or a side road," says Rus.

The team developed a system of models that are "parameterized", which means that they describe multiple situations that are somewhat similar. For example, one model might be broad enough to determine what to do at intersections, or what to do on a specific type of road.

MapLite differs from other map-less driving approaches that rely more on machine learning by training on data from one set of roads and then being tested on other ones.

"At the end of the day we want to be able to ask the car questions like 'how many roads are merging at this intersection?'" says Ort. "By using modeling techniques, if the system doesn't work or is involved in an accident, we can better understand why."

MapLite is still limited in many ways. It isn't yet reliable enough for mountain roads, since it doesn't account for dramatic changes in elevation. As a next step, the team hopes to expand the variety of roads that the vehicle can handle. Ultimately they aspire to have their system reach comparable levels of performance and reliability as mapped systems but with a much wider range.

"I imagine that the self-driving cars of the future will always make some use of 3D maps in urban areas," says Ort. "But when called upon to take a trip off the beaten path, these vehicles will need to be as good as humans at driving on unfamiliar roads they have never seen before. We hope our work is a step in that direction."

###

This project was supported in part by the National Science Foundation and the Toyota Research Initiative.

Media Contact

Rachel Gordon
rachelg@csail.mit.edu
617-823-5537

 @mit_csail

http://www.csail.mit.edu/ 

Rachel Gordon | EurekAlert!

Further reports about: 3D Artificial Intelligence Laboratory CSAIL GPS data Self-driving cars

More articles from Automotive Engineering:

nachricht The car of the future – sleeper cars and travelling offices too?
18.06.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht When your car knows how you feel
20.12.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>