Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-driving cars for country roads

07.05.2018

Most autonomous vehicles require intricate hand-labeled maps, but MIT CSAIL's MapLite enables navigation with just GPS and sensors

Uber's recent self-driving car fatality underscores the fact that the technology is still not ready for widespread adoption. One reason is that there aren't many places where self-driving cars can actually drive. Companies like Google only test their fleets in major cities where they've spent countless hours meticulously labeling the exact 3D positions of lanes, curbs, off-ramps and stop signs.


Uber's recent self-driving car fatality underscores the fact that the technology is still not ready for widespread adoption. One reason is that there aren't many places where self-driving cars can actually drive. Companies like Google only test their fleets in major cities where they've spent countless hours meticulously labeling the exact 3D positions of lanes, curbs, off-ramps and stop signs.

Credit: MIT CSAIL

Indeed, if you live along the millions of miles of U.S. roads that are unpaved, unlit or unreliably marked, you're out of luck. Such streets are often much more complicated to map, and get a lot less traffic, so companies are unlikely to develop 3D maps for them anytime soon. From California's Mojave Desert to Vermont's White Mountains, there are huge swaths of America that self-driving cars simply aren't ready for.

One way around this is to create systems advanced enough to navigate without these maps. In an important first step, a team from MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) has developed MapLite, a new framework that allows self-driving cars to drive on roads they've never been on before without 3D maps.

MapLite combines simple GPS data that you'd find on Google Maps with a series of sensors that observe the road conditions. In tandem, these two elements allowed the team to autonomously drive on multiple unpaved country roads in Devens, Massachusetts, and reliably detect the road more than 100 feet in advance. (As part of a collaboration with the Toyota Research Institute, researchers used a Toyota Prius that they outfitted with a range of LIDAR and IMU sensors.)

"The reason this kind of 'map-less' approach hasn't really been done before is because it is generally much harder to reach the same accuracy and reliability as with detailed maps," says CSAIL graduate student Teddy Ort, who was a lead author on a related paper. "A system like this that can navigate just with on-board sensors shows the potential of self-driving cars being able to actually handle roads beyond the small number that tech companies have mapped."

The paper, which will be presented in May at the International Conference on Robotics and Automation (ICRA) in Brisbane, Australia, was co-written by MIT professor Daniela Rus and PhD graduate Liam Paull, who is now an assistant professor at the University of Montreal.

How it works

For all the progress that has been made with self-driving cars, their navigation skills still pale in comparison to humans'. Consider how you yourself get around: if you're trying to get to a specific location, you probably plug an address into your phone and then consult it occasionally along the way, like when you approach intersections or highway exits.

However, if you were to move through the world like most self-driving cars, you'd essentially be staring at your phone the whole time you're walking. Existing systems still rely heavily on maps, only using sensors and vision algorithms to avoid dynamic objects like pedestrians and other cars.

In contrast, MapLite uses sensors for all aspects of navigation, relying on GPS data only to obtain a rough estimate of the car's location. The system first sets both a final destination and what researchers call a "local navigation goal", which has to be within view of the car. Its perception sensors then generate a path to get to that point, using LIDAR to estimate the location of the road's edges. MapLite can do this without physical road markings by making basic assumptions about how the road will be relatively more flat than the surrounding areas.

"Our minimalist approach to mapping enables autonomous driving on country roads using local appearance and semantic features such as the presence of a parking spot or a side road," says Rus.

The team developed a system of models that are "parameterized", which means that they describe multiple situations that are somewhat similar. For example, one model might be broad enough to determine what to do at intersections, or what to do on a specific type of road.

MapLite differs from other map-less driving approaches that rely more on machine learning by training on data from one set of roads and then being tested on other ones.

"At the end of the day we want to be able to ask the car questions like 'how many roads are merging at this intersection?'" says Ort. "By using modeling techniques, if the system doesn't work or is involved in an accident, we can better understand why."

MapLite is still limited in many ways. It isn't yet reliable enough for mountain roads, since it doesn't account for dramatic changes in elevation. As a next step, the team hopes to expand the variety of roads that the vehicle can handle. Ultimately they aspire to have their system reach comparable levels of performance and reliability as mapped systems but with a much wider range.

"I imagine that the self-driving cars of the future will always make some use of 3D maps in urban areas," says Ort. "But when called upon to take a trip off the beaten path, these vehicles will need to be as good as humans at driving on unfamiliar roads they have never seen before. We hope our work is a step in that direction."

###

This project was supported in part by the National Science Foundation and the Toyota Research Initiative.

Media Contact

Rachel Gordon
rachelg@csail.mit.edu
617-823-5537

 @mit_csail

http://www.csail.mit.edu/ 

Rachel Gordon | EurekAlert!

Further reports about: 3D Artificial Intelligence Laboratory CSAIL GPS data Self-driving cars

More articles from Automotive Engineering:

nachricht Three Autonomous Mini Buses for Karlsruhe
14.05.2019 | FZI Forschungszentrum Informatik

nachricht A Jetsons future? Assessing the role of flying cars in sustainable mobility
10.04.2019 | University of Michigan

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For a better climate in the cities: Start-up develops maintenance-free, evergreen moss façades

25.06.2019 | Architecture and Construction

An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening

25.06.2019 | Life Sciences

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>