Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robotic Aircraft & Ground Vehicle Collaborate at Rodeo

14.10.2010
Researchers at the Georgia Tech Research Institute (GTRI) are poised to show the U.S. Army an advanced approach to enabling autonomous collaboration among dissimilar robotic vehicles.

The GTRI system, called the Collaborative Unmanned Systems Technology Demonstrator (CUSTD), employs two small-scale aircraft and a full-size automobile to perform a complex, interactive mission without human intervention. The demonstration system uses onboard computers running advanced collaborative-vehicle software – along with novel sensors and open standards-based communications and interfaces -- to create an autonomous system with unique capabilities.

GTRI's CUSTD system will take part in Robotics Rodeo 2010, scheduled for Oct. 12-15 at Fort Benning, Ga. The Rodeo is hosted by the U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC), based near Detroit. A number of invited robotic-research teams will demonstrate their work at the event.

"We believe our system represents the leading edge of demonstrating collaborative autonomous vehicle capabilities," said Lora Weiss, a principal research engineer who is a member of GTRI’s Unmanned and Autonomous Systems team. "This system demonstrates not only the collaborative interoperability possible among dissimilar vehicles, but also the numerous sensing technologies that can be included onboard as interchangeable payloads -- chemical and infrared sensors, still and video cameras, and sophisticated signal- and data-processing."

The GTRI system uses two unmanned aerial vehicles (UAVs) that have nine-foot wingspans, seven-pound scientific-instrument payloads, and global positioning systems (GPS) for navigation. The unmanned ground vehicle (UGV) is a full-size Porsche Cayenne.

The aircraft require human guidance during takeoff, but while aloft they become autonomous for both navigation and target-locating tasks. The Porsche -- the same “Sting” vehicle entered by Georgia Tech in the DARPA Urban Challenge – is fully autonomous.

“The vehicles' very dissimilarity helps them collaborate effectively,” said Charles Pippin, a GTRI research scientist who led the CUSTD effort.

Fast-moving unmanned air vehicles, he explained, can find targets over a wide area, but their altitude and the limitations of their lightweight sensors can lessen the quality of gathered data. However, the UAVs can call in an unmanned ground vehicle – equipped with large, complex sensors and cameras -- to analyze the target location more fully.

Personnel from several GTRI units have participated in the CUSTD effort, said Pippin, who like Weiss is a member of GTRI's Unmanned and Autonomous Systems team. CUSTD's current capabilities are based on extensive research and testing, including more than 50 test flights conducted at Fort Benning and other locations throughout the past year.

A demonstration opportunity such as the Robotics Rodeo, Pippin said, allows researchers to dramatize how well multiple autonomous robots can now collaborate.

"It's hard to illustrate the effectiveness of collaborative interoperability and autonomy algorithms in a simulation," he said. "When onlookers see the technology demonstrated on hardware platforms, then it becomes very real."

In a typical CUSTD scenario, the two aircraft search for an existing target over a wide area. When one plane spots the target, it radios its location using GPS coordinates to the unmanned ground vehicle, which then finds its way around buildings and along roads to the target.

At the same time, the unmanned air vehicle over the target can ask the second aircraft to fly to the target and use its sensors to further analyze the situation. Such flexibility can be important, Pippin said, because UAVs are often outfitted with different sensors due to weight and cost considerations.

One technique that is still under development at GTRI -- and is proving valuable for vehicle collaboration -- is called market-based auctions, Pippin said. This approach uses an "auction" type of algorithm that lets robotic vehicles "bid" on a given task. Using this method, unmanned vehicles can autonomously divide up work on the spot in the most efficient way.

In an auction-technology scenario, an unmanned air vehicle over a target might send out a bid to other nearby UAVs, asking which among those airplanes that are outfitted with a particular sensor is closest to the target. The UAV that best complies with both requirements – equipment and proximity -- wins the bid.

In a GTRI experiment, unmanned air vehicles using a market-based approach reduced the travel required to complete a task by nearly 50 percent. The result was a substantial saving in both time and fuel.

Weiss explained that GTRI's CUSTD system is standards compliant, an important consideration in current defense-technology development. All GTRI autonomous-system designs now comply with the Standard Interface of the Unmanned Control System for NATO UAV interoperability (STANAG 4586) and with the Joint Architecture for Unmanned Systems (JAUS) scripting language.

"By developing these systems to be STANAG and JAUS compliant, we're building in future interoperability with other unmanned systems produced by different vendors," Weiss said. "If upcoming systems are going to be able to communicate, as well as operate with the control-system designs now being developed, they’ll need to be standards compliant."

The CUSTD system also makes use of FalconView™, a Windows-based mapping application developed by GTRI for the Department of Defense. FalconView supports many map types, such as aeronautical charts, satellite images and elevation maps. FalconView can be used by a ground-based station to monitor and control the system.

In the past several years, GTRI has been bringing autonomous vehicle research under one umbrella that includes all aspects of systems-payload, sensor, autonomy logic and collaborative operations. Research now also includes unmanned underwater vehicles and space vehicles.

The Robotics Rodeo will consist of two separate events. The Extravaganza is open to the public. The Robotic Technology Observation, Demonstration and Discussion (RTOD2), closed to the public, allows research teams to demonstrate their technologies to government observers and contractors.

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Automotive Engineering:

nachricht The car of the future – sleeper cars and travelling offices too?
18.06.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Self-driving cars for country roads
07.05.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>