Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highly realistic driving simulator helps develop safer cars

04.04.2006
EUREKA project E! 1493 ULTIMATE has led to the development of a highly sophisticated simulator to improve car design and increase road safety in Europe using novel mechanical, display and software technology.

Simulators can make a major contribution to vehicle design and the study of human driving factors. However, they have been of more limited value for road vehicles due to the large linear motion needed (for e.g. when turning corners or during braking). As a result, the cost of suitable car simulators had been prohibitive.

Dutch, French and UK partners in the ULTIMATE project combined expertise in car design, motion platforms, displays and software to develop a highly cost-effective new simulator design that will allow a more detailed study of human behaviour when driving road vehicles, as well as the trial and development of new aids to improve performance and safety for vehicle users. The ULTIMATE simulator is compact and modular with a choice of conventional screen or head-mounted virtual reality displays supplying information on car performance and visibility - from the very beginning of vehicle development.

Overcoming mechanical constraints

New design and materials were essential to the project. “We needed to overcome the mechanical constraints of earlier simulators to be able to accelerate for a sufficient duration of 1 to 3 sec at 0.1g for example in X and Y axes with a high payload,” explains ULTIMATE project leader Dr Andras Kemeny, head of the Renault Technical Centre for Simulation and Renault’s expert in driving simulation and virtual reality. ULTIMATE took an innovative and particular cost-effective approach, resulting in a low overall weight for the simulator – around 3.5 tonnes. It uses a compact six-axis platform mounted on a second large linear motion bi-directional frame that allows peak accelerations of up to 7 m/s2 in X and Y directions.

Advanced virtual display

An on-board 150° cylindrical screen provides a lightweight display that supplies full motion performance. Alternatively, when physical component integration is impossible or impractical, the driver can use a high-performance, head-mounted display (HMD) that makes it possible to drive in a fully virtual cockpit. The display systems were developed by UK partner SEOS; the HMD in the EUREKA E! 1924 CARDS project. “SEOS was involved in the project from the beginning and contacted Renault for information about track simulation. We became involved as an original partner pulled out. We asked for modifications and encouraged other partners to join. A second EUREKA project – MOVES – will extend the work of ULTIMATE to optimise the software and the motion algorithms. This new project is being led by our ULTIMATE project partner CNRS (the French National Centre for Scientific Research),” says Dr Kemeny. “EUREKA played a crucial role both in providing access to funding and in offering a coherent legal structure for co-operation over the research period. Without such a structure I believe we could not have done this project.”

Catherine Shiels | alfa
Further information:
http://www.eureka.be

More articles from Automotive Engineering:

nachricht The car of the future – sleeper cars and travelling offices too?
18.06.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Self-driving cars for country roads
07.05.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>