Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting pedestrian safety in the driving seat

13.01.2006
Every year in the European Union there are over 9,000 deaths and 200,000 injured victims in road accidents in which pedestrians and cyclists collide with a car. Hoping to improve on these grim statistics, is a cutting-edge sensing system that could ultimately help to save the lives of vulnerable road users (VRUs).

“The concept is relatively straightforward,” explains Dr Marc-Michael Meinecke of Volkswagen, one of the chief partners in the SAVE-U project along with DaimlerChrysler, Mira and Siemens VDO Automotive. “SAVE-U combines sensors such as radar, vision and infrared camera, as well as sensor fusion and actuators to increase safety for pedestrians. The main idea is that the sensors will recognise pedestrians and if a pedestrian has a high probability to collide with the vehicle then automatic braking will be initiated by the system.”

The project set out to develop an innovative pre-impact sensing platform that operates three different technologies of sensors simultaneously, and then fuses their data to protect cyclists and pedestrians under different weather and light conditions. The system comprises a radar network composed of several 24 GHz sensors working in parallel and an imaging system composed of passive infrared and colour video cameras.

A prototype vehicle incorporating the new system has been successfully tested in the United Kingdom. Installed on the car are two cameras – one video and one infrared – as well as the radar device. The system calculates in a matter of seconds the movement of pedestrians within the ‘capture zone’, which can be anything up to 30 metres away from the vehicle. From that point on, the car’s onboard cameras tracks the pedestrians’ movements and this information is correlated with data received from the radar network (such as distance to objects and their speed). SAVE-U can thus identify any pedestrian or cyclist coming within the trajectory of the vehicle and after analysing the situation, warn the driver or apply automatic braking if there is a risk of collision.

The partners opted to tackle the problem of protecting cyclists and pedestrians in three distinct stages: detection of VRUs at sufficient distance covering a relevant set of scenarios; definition and implementation of driver warning and vehicle control strategies to avoid, or at least minimise, the impact of a crash; and defining vehicle-mounted VRU protection strategies in case the crash cannot be avoided.

“Accident statistics from Volkswagen Accident Research in cooperation with the Medical University of Hanover were analysed,” says Dr Meinecke. “One of the main outcomes of the analysis was the conclusion that active hood concepts, external airbags, automatic braking systems, night vision, and other actuators seem to be very sufficient measure to lower the injury level of pedestrians. Within the SAVE-U demonstrator vehicles mainly automatic braking measures are implemented.”

Major advances were made in areas such as object tracking to obtain a robust trajectory, and the development of a deployment algorithm to be able to activate the automatic brakes without false alarms. Aspects of cost reduction and the reduction of sensor size benefited from the close teamwork, says Dr Meinecke.

In August, the project culminated with a special workshop in the United Kingdom showcasing the technology developed over the previous three years. The workshop featured samples of radar sensors and passive infrared video camera integral to the system, as well as demonstrations of the technology in action using two test vehicles (Mercedes E Class and Volkswagen Passat) equipped with the sensing platform, driver warning and vehicle control systems.

While there is clearly a strong demand for such technology to be implemented in vehicles as soon as possible, there is still a long road ahead before the SAVE-U innovations become standard.

“For a start, the sensors have to be shrunk further in size and price to enable them to be integrated in serial cars. The sensor costs will also have to be decreased dramatically to have a chance to make the systems cost effective. And, last but not least, the software components are still not fulfilling the requirements for serial production. I think in the area of pedestrian protection these pedestrian recognition systems will be the main focus of research activities in coming years,” he says.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/index.cfm/section/news/tpl/article/ID/80033/BrowsingType/Features
http://www.save-u.org
http://istresults.cordis.lu/

More articles from Automotive Engineering:

nachricht The car of the future – sleeper cars and travelling offices too?
18.06.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Self-driving cars for country roads
07.05.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

Computer model predicts how fracturing metallic glass releases energy at the atomic level

20.07.2018 | Physics and Astronomy

Relax, just break it

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>