Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Driving improved automotive chip design

06.09.2005


A recently completed EU project developed better tools for integrated microcircuit design; achieved some world firsts in performance analysis and now may even spin off a new company to commercialise some of its new technologies.



The DEMAND project wanted to develop a reliable and cost-effective design process for ‘smart power’ integrated circuits. This type of microchip can integrate a wide variety of functions into one piece of silicon. The advantage is lower-cost and increased reliability.

It developed a design process specifically intended to improve the robustness and reliability of integrated circuits for the automotive industry.


Modern cars are typically riddled with microelectronics, used to control everything from the mirrors to combustion. Currently the industry’s drive is towards the increase of additional electrical functions and the integration of these in a smaller number of chips.

The trade-off, however, is an increasingly expensive chip design process. The sector demands robust chips that can withstand suddenly occurring not wanted high energetic electric pulses. These pulses can mean a massive increase in electrical current and a brief, but massive, rise in temperature within the chip’s circuits. Temperatures sometimes reach up to 1000 degrees centigrade for a few hundreds of nanoseconds. This can either disturb the chip function or physically destroy the chips.

"These stresses can occur either when the car is in operation, or even during manufacturing," says Dr Dionyz Pogany of the Institute for Solid State Electronics at the Vienna University of Technology, one of the DEMAND partners.

Typically this problem is encountered in cars during the switching of the different electrical machines or relays within the car, or an electrostatic discharge. This can destroy the delicate circuitry in the car’s control systems.

It’s hard to imagine that a simple effect like a static shock, experienced regularly by car users, could cause so much damage. But microchips, and particularly complex, integrated chips, are very small, and thus delicate. The effects of a discharge rise exponentially as a result.

The DEMAND team scored an exceptional coup by developing a new type of chip analysis system. The system verified the predictions of the improved simulations.

This analysis, called Transient Interferometric Mapping (TIM), uses infrared interferometry to reveal exactly what is happening on a chip when it receives a high current pulse. The simulation predicted the effects of stress while TIM revealed whether it actually occurred. The strength of this measurement technique is that for the first time the occurrence of moving current filaments could be experimentally proven.

The upshot is a detailed, non-invasive and non-destructive record of what exactly is happening on a chip when a high energetic pulse hits. DEMAND researchers were able to tell what problems occurred on the chip and that revealed what remedies were required to make them more robust. As a result, they helped refine the simulation models.

"In the past it was not possible to observe exactly what is happening in the chip when it receives this type of stress,” says Pogany. “TIM also has the ability to take a single snap-shot of the internal dynamics of the chip, another improvement achieved by the DEMAND team."

This is invaluable information for designers, because they can see exactly what happens to the chip, what systems fail, what systems survive, and why. It provides them with a blueprint to refine the device.

The combination of understanding the destructive mechanisms of energetic pulses, improving device simulation, particularly at temperature levels that have never been reached before, and then observing the impact of electrical or thermal stress on the device, means new chips can be developed at enormously reduced cost. Reliability will be improved. And opportunities to create new devices now exist.

"Right now we will certainly work with anyone who wants to use our TIM system to help develop their microchips, but we have not yet decided if it is feasible to launch a spin-off company," says Prof Erich Gornik, who was responsible for the DEMAND project at TU Vienna. "That is a definite possibility. A lot of people in the industry are excited by what our system can do to improve chip design.”

"In the meantime we want to develop more advanced models of our TIM technology. We want to make it more robust, to be able to sell it to failure analysis departments in semiconductor companies. Right now the TIM tool needs a lot a maintenance, and we hope to lower the maintenance required to make it more attractive for industry."

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Automotive Engineering:

nachricht The car of the future – sleeper cars and travelling offices too?
18.06.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Self-driving cars for country roads
07.05.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>