Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Driving improved automotive chip design

06.09.2005


A recently completed EU project developed better tools for integrated microcircuit design; achieved some world firsts in performance analysis and now may even spin off a new company to commercialise some of its new technologies.



The DEMAND project wanted to develop a reliable and cost-effective design process for ‘smart power’ integrated circuits. This type of microchip can integrate a wide variety of functions into one piece of silicon. The advantage is lower-cost and increased reliability.

It developed a design process specifically intended to improve the robustness and reliability of integrated circuits for the automotive industry.


Modern cars are typically riddled with microelectronics, used to control everything from the mirrors to combustion. Currently the industry’s drive is towards the increase of additional electrical functions and the integration of these in a smaller number of chips.

The trade-off, however, is an increasingly expensive chip design process. The sector demands robust chips that can withstand suddenly occurring not wanted high energetic electric pulses. These pulses can mean a massive increase in electrical current and a brief, but massive, rise in temperature within the chip’s circuits. Temperatures sometimes reach up to 1000 degrees centigrade for a few hundreds of nanoseconds. This can either disturb the chip function or physically destroy the chips.

"These stresses can occur either when the car is in operation, or even during manufacturing," says Dr Dionyz Pogany of the Institute for Solid State Electronics at the Vienna University of Technology, one of the DEMAND partners.

Typically this problem is encountered in cars during the switching of the different electrical machines or relays within the car, or an electrostatic discharge. This can destroy the delicate circuitry in the car’s control systems.

It’s hard to imagine that a simple effect like a static shock, experienced regularly by car users, could cause so much damage. But microchips, and particularly complex, integrated chips, are very small, and thus delicate. The effects of a discharge rise exponentially as a result.

The DEMAND team scored an exceptional coup by developing a new type of chip analysis system. The system verified the predictions of the improved simulations.

This analysis, called Transient Interferometric Mapping (TIM), uses infrared interferometry to reveal exactly what is happening on a chip when it receives a high current pulse. The simulation predicted the effects of stress while TIM revealed whether it actually occurred. The strength of this measurement technique is that for the first time the occurrence of moving current filaments could be experimentally proven.

The upshot is a detailed, non-invasive and non-destructive record of what exactly is happening on a chip when a high energetic pulse hits. DEMAND researchers were able to tell what problems occurred on the chip and that revealed what remedies were required to make them more robust. As a result, they helped refine the simulation models.

"In the past it was not possible to observe exactly what is happening in the chip when it receives this type of stress,” says Pogany. “TIM also has the ability to take a single snap-shot of the internal dynamics of the chip, another improvement achieved by the DEMAND team."

This is invaluable information for designers, because they can see exactly what happens to the chip, what systems fail, what systems survive, and why. It provides them with a blueprint to refine the device.

The combination of understanding the destructive mechanisms of energetic pulses, improving device simulation, particularly at temperature levels that have never been reached before, and then observing the impact of electrical or thermal stress on the device, means new chips can be developed at enormously reduced cost. Reliability will be improved. And opportunities to create new devices now exist.

"Right now we will certainly work with anyone who wants to use our TIM system to help develop their microchips, but we have not yet decided if it is feasible to launch a spin-off company," says Prof Erich Gornik, who was responsible for the DEMAND project at TU Vienna. "That is a definite possibility. A lot of people in the industry are excited by what our system can do to improve chip design.”

"In the meantime we want to develop more advanced models of our TIM technology. We want to make it more robust, to be able to sell it to failure analysis departments in semiconductor companies. Right now the TIM tool needs a lot a maintenance, and we hope to lower the maintenance required to make it more attractive for industry."

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Automotive Engineering:

nachricht The car of the future – sleeper cars and travelling offices too?
18.06.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Self-driving cars for country roads
07.05.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>