Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How scanning your finger could save your life

14.06.2005


Who would have thought taking a simple scan of your finger could save your life?



Unlikely on the face of it, perhaps, but a consortium including Cranfield Impact Centre and Nissan Technical Centre Europe, has developed a prototype bone density scanning system which could be used to improve driver and passenger restraint systems in cars.

The system would work by taking an ultrasound scan of your finger and using the data to estimate the bone strength of each passenger, in particular the chest area which is most vulnerable to seat belt injury during accidents.


This information would then enable the system to assess a person’s potential tolerance to injury and adjust the force of their seatbelt accordingly so it ‘gives’ a little once the brakes are applied and the car begins to decelerate.

It will also adjust the firing of airbags. In cars with dual-stage airbags, for instance the system would be clever enough to decide whether or not to fire both stages.

Ultrasound was chosen because, unlike x-rays, it uses no ionising radiation. This not only makes it a much safer option; its routine use in foetal scans makes it more likely to be readily accepted by the public.

Cranfield Impact Centre’s Technical Director, Roger Hardy, said: "The system could be built into dashboard consoles, the driver’s door or even, when miniaturised sufficiently, into the gear lever.

"It would need to be used each time the car’s ignition was switched on, before the driver was able to move off. In its simplest form, it could be a hole into which you place your finger; the instrument would be powered to lightly grip the finger, take the reading and then release. This would then feed into the restraint system, part of a processing unit in the car, in addition to what is routinely used to detect a go/no-go situation for firing airbags and controlling the seatbelt operating characteristics.

"A lot of the ground work has been done and we’re putting together our final report. We do, however, need to make further investigations before we look to commercialise the system," continued Roger. "We need to assess how it might be integrated into a car; what would be the power consequences on the battery, will it affect the engine management system, for instance – these are just some of the things needing consideration."

Angelisa Conby | alfa
Further information:
http://www.cranfield.ac.uk
http://www.cranfield.ac.uk/university/press/2005/13062005.cfm

More articles from Automotive Engineering:

nachricht The car of the future – sleeper cars and travelling offices too?
18.06.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Self-driving cars for country roads
07.05.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>