Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting the feel of virtual reality

27.04.2005


A giant leap forward in the realism of virtual reality (VR) may be just around the corner as a team of European researchers near the completion of a pioneering project to add textures, lighting effects and ‘feel’ to computer-generated 3D models.



Launched in 2002, the RealReflect project was the first attempt to use a new image acquisition technique known as Bidirectional Texture Function (BTF) that captures the look and feel of different materials. When this IST programme funded-project ends this October it is expected to result in the first comprehensive application using BTF for industrial modelling.

The project partners have geared their work toward the automobile sector, where the system could revolutionise the development of new models of vehicles by dramatically cutting costs and time. It also promises to open new possibilities in architecture, and further down the line, in computer games and other graphics applications.


Adding realism to virtual reality

“RealReflect is a major advancement over traditional virtual reality modelling, which basically relies on simplifications of reality by describing optical properties of a surface by a 2D matrix of data that does not show the real effects of lighting,” explains project coordinator Attila Neumann at the Technical University of Vienna. “Traditional virtual reality modelling, despite its name, lacks the feeling of reality and is a poor representation of it because the way things look highly depends on how they are illuminated and from what direction they are being viewed.”

By taking those two aspects – lighting and viewing direction – into account, the RealReflect system is capable of acquiring and rendering in VR even the most subtle textures, from leather on a car seat and wood panelling on a dashboard to metallic paint or chrome on door handles. Textures can be acquired from physical samples and then rendered onto the 3D models.

“It is a much more powerful and demanding system than traditional virtual reality modelling, making it look real instead of simply believable,” Neumann says.

That in turn brings with it additional complications. In order to be able to realistically represent textures the system requires a thousand times more data than other VR modelling tools, leading the project partners to develop compression techniques for the BTF information. The compression allows the models to be viewed and worked on in real time.

“It would be pointless having all this data if it filled up your hard drive and proved impossible to manipulate,” the coordinator notes.

The project also developed methods to take a small acquired sample of a material and multiply it seamlessly on a 3D model, which when viewed would show not only the texture but also its appearance under different types of illumination from different angles.

Allowing immersive reality

The overall result is a 3D modelling tool that permits immersive reality, especially when visualised in a CAVE, a cube-shaped VR simulator that users can walk inside and see everything in three dimensions.

“I could go into a CAVE and sit in a car seat and see the car around me, it would be like being inside the vehicle. I could look at the finish of the dashboard, the position of the gear stick, the material used on the seats,” Neumann explains.

To date the ability to view a vehicle down to the finest detail has only been possible by physically building a prototype, a long and costly process.

“When a car company wants to make a new model around 50 prototypes of different designs are built, of those most will be rejected before the company reaches the final stage of choosing a model from maybe five examples,” the coordinator says. “With RealReflect there would be no need to produce 50 physical prototypes as they could be created and viewed virtually, requiring maybe only five or 10 real prototypes or even less to be produced.”

That translates into “enormous” cost savings for car manufacturers and reduces the time it takes to bring a new model to market. “To date 3D models have only been used from an engineering perspective, never to actually verify what the vehicle looks like – with RealReflect that can be achieved accurately,” Neumann says.

Besides displaying in detail the look of the vehicle, the system could also enhance safety by allowing designers to see the way different types of illumination reflect off its surfaces. This could, for example, allow designers to reduce potentially dangerous reflections on the windshield that may otherwise go unnoticed.

Beyond the automotive sector, the RealReflect system could also be applied to architecture, allowing architects to better visualise the appearance of materials used in construction, while offering clients the opportunity to virtually tour a building.

“In the future it could also be used in computer games and other graphics applications,” Neumann notes.

The project partners are currently drawing up a commercial strategy to market the system, which could include either selling it as a full application with a user interface or as individual components.

Either way, RealReflect is likely to result in a new generation of virtual reality, one that is more realistic than ever before.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Automotive Engineering:

nachricht The car of the future – sleeper cars and travelling offices too?
18.06.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Self-driving cars for country roads
07.05.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>