Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring the vibration in car panels to reduce metal fatigue

19.03.2003


With each new vehicle, the car industry faces a fresh battle to cut out the unwanted vibrations that cause irritating rattles and the metal fatigue that can cause parts to break, with potentially lethal consequences.

The complexity of the problems persuaded the German automobile giant BMW to team up with smaller partners to find a new way of designing new vehicles. It got together with Belgian companies LMS International, a world market leader in noise and vibration engineering, optics specialist Labor Dr Steinbichler and the Free University of Brussels in the EUREKA project HOLO-MODAL.

HOLO-MODAL has developed a new way of measuring the way car body panels vibrate that combines traditional vibration measurement with the latest holographic techniques.



Traditional measurement of vibration relies on attaching sensors to a test panel. However, it only measures the vibration at the sensor and attaching too many sensors changes the way the panel moves, altering the results. To gain an accurate picture of the whole panel’s response to vibration, you need to be able to see the effect on every part of the panel’s surface at the same time and without affecting the results. This is where holographic techniques come in.

Holographic analysis avoids physical contact with the test panel by illuminating the whole panel with a laser beam. By measuring the light that is reflected by the panel, the system produces a high-resolution 3-dimensional image of the whole surface as it vibrates.

The HOLO-MODAL partners designed a software package that combines traditional and holographic techniques, controls the hardware and shows how to incorporate the technique into early design work. Now car makers can design body panels that are safer, more durable and save development costs spent on vibration and noise control.

The computer models developed from the measurement data allow the effect of any design changes to be predicted and hence they allow users the chance to try out alternative solutions "on the computer" before actually building them In this way the system helps the development of design solutions.

This new technology can also be used to help design a new generation of safer, more durable and quieter domestic and office appliances and consumer electronic products.

Dr Herman van der Auweraer, project leader at LMS International, says none of the partners could have succeeded on their own.

“EUREKA allowed us to define and work towards a common goal of mutual interest," says van der Auweraer. "The partnership combined complementary capabilities and know-how in structural modelling and laser holography. This combination of technologies was critical to the development of the solution; however neither party had both skills available. The synergy was therefore essential for the success of the project."

"It is however also very relevant that the project combined end-user know-how and research direction. This ensured that the research and development efforts were focused on the real problems and not on academic topics.”

Nicola Vatthauer | alfa
Further information:
http://www.eureka.be/holomodal

More articles from Automotive Engineering:

nachricht The cold-start dilemma
27.02.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Three Autonomous Mini Buses for Karlsruhe
14.05.2019 | FZI Forschungszentrum Informatik

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

An MRI technique has been developed to improve the detection of tumors

03.06.2020 | Medical Engineering

K-State study reveals asymmetry in spin directions of galaxies

03.06.2020 | Physics and Astronomy

The cascade to criticality

03.06.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>