Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Be a jammy dodger – new sat nav to beat traffic jams

02.07.2008
Researchers are developing a new in-car navigation system which informs motorists about traffic jams ahead and advises the driver of the best route for their journey before they reach the congestion.

The ‘Congestion Avoidance Dynamic Routing Engine’ (CADRE) uses Artificial Intelligence (AI) to interpret live traffic information shared between vehicles fitted with a special GPS.

The project is part of a consortium, consisting of the University of Portsmouth, ComSine, Smartcom Software, the Transport Research Laboratory, ViaMichelin and Hampshire County Council.

CADRE can sense traffic slowing down and building up into jams and works by ‘monitoring’ other vehicles on the road, informing motorists 5 to 10 miles away of a situation as it’s happening and recommends steps to avoid it while they can.

The AI software is built around ‘fuzzy logic’ which mimics human reasoning. The capability comes from the University of Portsmouth’s Institute of Industrial Research (IIR) which specialises in using artificial intelligence techniques for industrial applications.

Dr David Brown, Head of the IIR, said: “The system interprets live data from current traffic conditions so the motorist receives up-to-the-minute advice and can make an informed choice. It’s designed to take the pain out of that agonising decision about whether to try an alternative route which could be equally congested.”

The system takes into account of how traffic speeds vary by day of the week and time of day and even on individual roads. It means that journey times are predicted more accurately and better routes are calculated that take account of the typical traffic conditions for the time of travel.

CADRE learns constantly from motorists’ incoming data and will adapt itself to long term and short term speed predictions and ever changing circumstances to continuously update and improve its knowledge.

“At present routing can be carried out for minimum time or distance, but this can easily be extended to other criteria such as minimum cost or minimum CO2 emissions,” said Dr Brown.

Over 2,100 journeys were made on routes around Hampshire including the M27, M3, A3 and the notorious M25 to provide data for analysis. Additional speed data came from the British Highways Agency data to form the background knowledge needed within the AI system.

Richard Walker is from the Transport Research Laboratory, formerly the research arm of the Department of Transport, who advised researchers on data sources and the best methods of testing. He said: “The transport system in the UK is one of the key drivers of the economy and with more and more cars on the roads; a system like CADRE would be a valuable tool in keeping traffic moving.”

Future plans for the system would extend it to ferries, trains and even planes allowing travellers to examine different departure times to estimate the best time and route to travel. CADRE could be in the shops in as little as 18 months.

The University of Portsmouth’s technical partners, ComSine and Smartcom Software, both specialise in developing software and systems for the mobile communications, navigation and geographic information markets.

The project was sponsored by the South East of England Development Agency (SEEDA) as part of its role in the Government’s Innovation Platform in Intelligent Transport Systems.

Lisa Egan | alfa
Further information:
http://www.port.ac.uk

More articles from Automotive Engineering:

nachricht A Jetsons future? Assessing the role of flying cars in sustainable mobility
10.04.2019 | University of Michigan

nachricht Solid state batteries for tomorrow's electric cars
22.02.2019 | Fraunhofer-Institut für Silicatforschung ISC

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>