Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cooperative system could wipe out car alarm noise

26.06.2008
The persistent, annoying blare of an ignored car alarm may become a sound of the past if a cooperative, mutable and silent network of monitors proposed by Penn State researchers is deployed in automobiles and parking lots.

"The basis of this system is trust," says Sencun Zhu, assistant professor of computer science and engineering. "You need to trust the entity that distributes the system's sensors, so you can rely on all the monitored cars having the goal of protecting your car and others from theft."

Working with Guohong Cao, associate professor of computer science and engineering, and Hui Song, recent Penn State graduate and now an assistant professor at Frostburg State University, Zhu developed a monitoring system that relies on a network formed by the cars parked in a parking lot. When a car enters a lot and parks, the sensor is alerted – probably when the car door locks -- and it sends out a signal that in essence says, "hello, I am here." Sensors in nearby cars acknowledge the signal and incorporate the new car into their network. Periodically, each car sends out a signal indicating that it is still there. When the driver unlocks the car, the sensor sends out a "goodbye" message and the network removes that car, and it drives away.

If, however, a car leaves the network without issuing a goodbye message, the other cars will notice the absence or the "still here" message. Once the system has confirmed that the car is gone, checking that other cars have not received the "still here" message, the monitoring sensor sends a signal identifying the car to the base unit in the parking lot, which will phone the owner to indicate the car is missing. The owner can then check it out.

"Our thought is that the apartment complex owner could provide the sensors with the parking stickers as an additional free perk," says Zhu, also assistant professor of information sciences and technology at Penn State. "All they need is the base unit, the car owner's phone number and the sensors in the car for the car should be safe in the lot."

If a car is stolen from the lot, it is preferable that the theft be noticed and reported before the car leaves the lot, but if it is not, the Sensor network-based Vehicle Anti-Theft system, SVATS, has another layer of protection.

Although the main or master sensor needs to be connected to the car's power system and so is fairly easily disabled by thieves, other slave sensors would be distributed in the car. These sensors might be activated when the master sensor no longer operates and begin to send out an identification signal. The researchers hope to be able to use existing wireless devices that are at intersections and roadsides, to track the sensors in the stolen car. While these wireless nodes are not on every street, in areas where they are used to sense traffic patterns, stop light timing and other things, they can be used to track stolen cars. Because the slave sensors are very small, they would be very difficult to locate and destroy, while conventional location equipment, such as various G.P.S. systems, can be identified and neutralized.

"Right now the sensors we are testing are about the size of a dollar coin with leads coming off," says Zhu. "We will eventually make them only about a cubic millimeter, small enough to embed in a parking sticker and very inexpensive to manufacture." A cubic millimeter is about the size of an ice cream sprinkle.

The researchers presented information on their system at the Institute of Electrical and Electronic Engineer's Infocom 2008 Conference in Phoenix. Experimental evaluation of the SVATS system used a laptop as a base station and one sensor per vehicle in a Penn State parking lot. The base station transmitted once per second while the vehicle sensors sent live messages every 200 milliseconds. Each sensor could monitor up to seven other nodes but should be monitored by at least three other nodes.

The researchers tested two different detection methods. The signature-based method took four to nine seconds to detect the absence of the stolen vehicle. This method requires that at least three nodes recognize that the stolen car has moved before sending an alert. Because of this requirement, there are no false positives and consequently, no false alarms. The system works in a parking lot and can track stolen vehicles.

According to Zhu, street parking is more difficult to deal with than parking lots, however, he believes that if apartment buildings along the street band together to provide sensors and base stations it might work as well. Because of the trust problem, he does not see the sensors being incorporated into cars from the factory, because identifying who owns which car and sensor would be difficult. Rather, Zhu thinks that perhaps eventually, some government office like a state's department of transportation could provide the sensors and keep track of the vehicles.

While the plan now is to have the base station contact the car owner by phone, eventually the option of having the call go to a protective service or the police for a fee is possible.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Automotive Engineering:

nachricht The car of the future – sleeper cars and travelling offices too?
18.06.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Self-driving cars for country roads
07.05.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>