Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Road safety: the uncrashable car?

14.04.2008
The largest road safety research project ever launched in Europe will usher in a series of powerful road-safety systems for European cars. But, in the long term, its basic, experimental research could lead to a car that is virtually uncrashable.

A truck exits suddenly from a side road, directly into your lane only dozens of metres ahead. Suddenly, your car issues a warning, starts applying the brakes and attempts to take evasive action. Realising impact is unavoidable; in-car safety systems pre-tension the safety belts and arm the airbag, timing its release to the second before impact.

Such is the promise of the uncrashable car, coming to a dealer near you in the perhaps not-too-distant future. The system is part of the basic research undertaken by the largest research initiative into road safety ever undertaken in Europe.

PReVENT has a budget of over €50 million and 56 partners pursuing a broad, but highly complementary programme of research. A dozen sub-projects focus on specific road-safety issues, but all projects support and feed into each other in some way.

PReVENT’s is studying relatively cheap, even simple, technologies – such as parking sensors and existing satellite navigation – that can be retooled to enhance driver safety. But as part of its broad and deep approach to car safety, it is also diving into more experimental and medium- to long-term systems, innovations that could appear in five-to-ten years.

The uncrashable car is a theoretical construct that concerned a handful of PReVENT’s sub-projects. But it could become far more of a reality than anyone expected.

Of course, it is impossible to stop all car collisions, but the technology could be pushed to make it increasingly unlikely and mitigate crashes when they do occur.

For example, PReVENT project WILLWARN uses wireless communication with other vehicles to alert the driver about potentially dangerous situations ahead, while MAPS&ADAS reads sat-nav maps to track approaching hazards, like bends, dips or intersections. SASPENCE looks at safe driving distances and speed, while LATERALSAFE finally brings active sensing to the blind spot.

All have their role in the uncrashable car, as do many others within the broader project. But two projects, APALACI and COMPOSE, take this a step further, actively tracking the speed and trajectories of surrounding vehicles and other road users in real time. If one vehicle suddenly stops, or a pedestrian suddenly steps onto the road, they swing into action to rapidly calculate the implications.

Predictive collision detection
APALACI is an advanced pre-crash mitigation system built round the registration of other motorists and cyclists. In the APALACI system, sensors monitor the street or road immediately around the vehicle and collect as much information about a collision as possible, before it even starts to take place.

The system uses this data to decide on the ideal safety reaction strategy. Examples include controlled braking manoeuvres, controlled activation of the occupant restraint systems or pre-arming airbag systems. The car can react far faster than the driver, cutting speed by crucial amounts to ensure unavoidable accidents are less severe.

APALACI also developed a so-called ‘Start Inhibit System’ for trucks. It surveys the blind spot immediately in front of a truck and protects pedestrians or cyclists by preventing dangerous manoeuvres.

APALACI was tested in a series of vehicles like the Fiat Stilo, the Volvo FH12 truck, the Alfa Romeo 156 and Mercedes E350. It used laser sensors, radar, software decision assistance and a variety of other technologies to achieve the goal.

Tiny changes have a huge impact
COMPOSE, on the other hand, aims more specifically to keep others, as well as its driver, safe. It can apply the brakes if a pedestrian steps onto the road, or extend the bumper, and raise the bonnet to enhance occupant protection.

Tiny differences have a huge impact on car safety. Dropping speed by 1km/h can reduce accidents with injury by 3 per cent, while braking fractions of a second sooner is enough to reduce the damage caused dramatically.

The systems were tested in the BMW 545i and the Volvo FH12 truck, and they do appreciably enhance safety. But, for all their potential, these systems remain, for now, the preserve of the future.

“The teams developed sophisticated algorithms to track all these elements in the landscape,” explains Matthias Schulze, coordinator of the EU-funded PReVENT project and Senior Manager for ITS & Services at Daimler AG. “But they require enormous computer power to keep track of all the various elements, so this work is aimed at basic research, establishing how it could be done. It will be a while before in-car computers are sophisticated enough to use these systems.”

Nonetheless, they do provide tools that automakers can use to mitigate the potential for accidents, and they provide a clear research roadmap for the uncrashable car of the future.

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89648

More articles from Automotive Engineering:

nachricht Three Autonomous Mini Buses for Karlsruhe
14.05.2019 | FZI Forschungszentrum Informatik

nachricht A Jetsons future? Assessing the role of flying cars in sustainable mobility
10.04.2019 | University of Michigan

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>