Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tooling up for tomorrow’s clever cars

29.02.2008
Cars are becoming more complex, with a range of advanced features we could hardly have imagined a few years ago made possible by sophisticated software-driven electronics. The downside is, with more to go wrong, more is going wrong, but European researchers have developed an antidote: a new computer language.

The average new car coming off the production line today has the same amount of electronic systems as a commercial airliner did two decades ago. Hard to accept perhaps, but true if auto-makers are to be believed.

Growth in automotive embedded systems (software and electronics) has been exponential since the early 1990s and the trend is predicted to continue. In 2002, electronic parts comprised 25 percent of a vehicle’s value – by 2015, car manufacturers predict this will hit 40 percent.

But the more electronic systems are added, the more they contribute to vehicle breakdowns and recalls. Researchers on the European ATESST project say a substantial share of vehicle failures today can be directly attributed to embedded systems, and field data indicates this share is increasing by several percent a year. This will reach unacceptable levels if no preventative action plan is put in place.

However the EU-funded, two-year project, which comes to an end when it presents its findings at a workshop in Brussels on 3 March this year, has developed an Architecture Description Language (ADL) aimed at improving methodology to handle component failures and avoid design flaws.

Binding them all
“New tools are needed to do a job which is becoming ever more complex,” says project coordinator Henrik Lönn. “The many components which go into vehicles are being made by a host of manufacturers, often using different processes and working to different standards.”

A common language at the top level is needed to bind them together, he says.

There have been a number of important initiatives, including the European-developed AUTOSAR standard, which is used by many component suppliers and is on its way to becoming a de facto international standard. Also in common usage are off-the-shelf UML2 modelling tools which are not specific to the auto industry.

“But this is still not enough,” he stresses. “What we have developed is an industry-specific system which works with these other standards and dictates what part of the system is performing what function, and makes sure the different components will work together.”

The problem is, despite the huge strides in electronics, until now not enough attention has been paid to the big picture. When the manufacturer gets a component from a supplier, no matter how sophisticated it might be, it comes with a text file which describes the system for the manufacturer’s engineers.

The EAST-ADL2 language the ATESST project has been developing enables the computer modelling of systems. Instead of the old-fashioned text file, a supplier can now provide a computer model of his system to the manufacturer who can then immediately integrate it into the overall design.

“What this does is to give the manufacturer a complete picture at a much earlier point in proceedings than is possible at the moment,” says Lönn. “You don’t have to wait for all the electronics and software to be ready and assembled, but can do your analysis at a much earlier stage.”

Clean, green mean machines
With a holistic view available much earlier than was previously possible, late-phase integration – where failure is both common and costly – is avoided and the chance of design errors, which are felt by car buyers, is minimised.

“Complex programs, like active safety functions, involve many systems and components. But we are at the stage now where it is becoming difficult to improve them without first improving our methodology, which is the purpose of EAST-ADL2.”

As well as the economic imperative to develop the new methodology, pressure will also come in the form of a new standard, ISO26262, controlling improvements in all the safety aspects of vehicles.

“This standard will put stringent requirements on the development of safety systems which means manufacturers will have to be more rigorous. Having the EAST-ADL2 language to work with will make this possible,” says Lönn.

“There is also pressure to build more environmentally-friendly cars and, to get the best environmental performance, optimised systems which are integrated and work properly together are needed,” he says.

With the development work over, the challenge now is to get the auto industry to accept EAST-ADL2 as a de facto standard. But the advantages to everybody are so obvious Lönn feels they will be adopted in one form or another. Indeed, he believes concepts from the project provide the basis for vehicles that are safer, greener, more fuel efficient, more reliable and more intelligent than would have been thought possible just a few short years ago.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89579

More articles from Automotive Engineering:

nachricht Solid state batteries for tomorrow's electric cars
22.02.2019 | Fraunhofer-Institut für Silicatforschung ISC

nachricht The car of the future – sleeper cars and travelling offices too?
18.06.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>