Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering joining technology for high performance hybrid automotive parts

18.12.2015

Flexible production cell for Hybrid Joining – FlexHyJoin

Aim of the international project FlexHyJoin, funded by the European Union’s program for research and innovation “Horizon 2020”, is the novel development of a fully automatized joining process for the automotive industry. Its objective is to enable rapid manufacturing of hybrid metal/thermoplastic-based fiber reinforced polymer composite (TP-FRPC) parts.


Laser-based joints of steel (1.4301) with different thermoplastic composites (CFRP, GFRP)

Institute for Composite Materials (IVW)

Hybrid components play an essential role in vehicle weight reduction and facilitate the materials’ full potential exploitation. Particularly metal/TP-FRPC multimaterials are very promising for this purpose, as TP-FRPC materials offer high specific mechanical properties and excellent chemical/corrosion resistance.

However, a satisfying joining method for metal and TP-FRPC parts does not exist until now, ensuring a high mechanical bonding performance without employing additional material and simultaneously possessing an adequate level of automation.

Precisely this approach represents the project’s core: Both induction joining and laser joining are combined in a fully automatized production cell. These two indicatory technologies perfectly complement each other concerning their particular fields of application.

Implementing innovative surface textures enables gapless form closure and improved adhesion in automotive components without requiring any additional material, such as adhesives.

By combining the surface treatment with the complementary induction joining and laser joining, as well as integrating the complete equipment with an on-line process control, a very high degree of automation and significant reduction in the manufacturing-critical cycle time can be achieved.

Thus, FlexHyJoin will support the industry-wide usage of metal/TP-FRPC hybrid components in automotive mass production.

The project was launched in October 2015 with a successful kick-off meeting in Brussels. Until December 2018, ten contributing partners from five countries are cooperating within the FlexHyJoin consortium.

CRF Centro Ricerche FIAT S.c.p.A., Italy
EDAG Engineering GmbH, Germany
FILL Gesellschaft m.b.H., Austria
Fraunhofer ILT, Germany
Fundación Tecnalia Research & Innovation, Spain
HBW-Gubesch Thermoforming GmbH, Germany
Institut fuer Verbundwerkstoffe GmbH (Project Coordinator), Germany
KGR S.p.A., Italy
Leister Technologies AG, Switzerland
New Infrared Technologies S.L., Spain

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 677625.

Contact information:

Dr.-Ing. Birgit Bittmann
E-Mail: birgit.bittmann@ivw.uni-kl.de
Phone: +49 631 2017 427

Nora Feiden
E-Mail: nora.feiden@ivw.uni-kl.de
Phone: +49 631 2017 249

Christoph Engelmann
E-Mail: christoph.engelmann@ilt.fraunhofer.de
Phone: +49 241 8906-217

Weitere Informationen:

http://www.ivw.uni-kl.de
http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Automotive Engineering:

nachricht Three Autonomous Mini Buses for Karlsruhe
14.05.2019 | FZI Forschungszentrum Informatik

nachricht A Jetsons future? Assessing the role of flying cars in sustainable mobility
10.04.2019 | University of Michigan

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>