Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marines to Use Autonomous Vehicles Built by Virginia Tech Students

24.06.2010
Four unmanned autonomous vehicles designed and built by a team of engineering students at Virginia Tech using the TORC Robotic Building Blocks product line, are headed to Hawaii to participate in the 2010 Rim of the Pacific (RIMPAC) war games in July.

Fourteen nations, 34 ships, five submarines, more than 100 aircraft, and 20,000 personnel will participate in the biennial RIMPAC exercise June 23 through Aug. 1.

The Marine Corps Warfighting Laboratory worked closely with Virginia Tech and TORC in the creation of the four Ground Unmanned Support Surrogates (GUSS) that will be used for their ability to support a platoon of U.S. Marines.

The unmanned vehicles can carry up to 1800 pounds and can move at the speed of a troop on foot, or about five miles per hour. The vehicles are designed to re-supply troops, to reduce the actual loads manually carried by Marines, and to provide an immediate means for the evacuation of any casualties in combat. A Marine unit will operate GUSS during the Naval Laboratory’s enhanced company operations experimentation that coincides with RIMPAC.

Virginia Tech and TORC, a company founded by alumni of the university’s robotics program, http://www.torctech.com/ share a very successful track record on their collaborations. Together, they developed autonomous vehicles for the Urban Challenge competition sponsored by the Defense Advanced Research Projects Agency (DARPA) in 2006 and in 2007. “The focus of the collaborations is to leverage the research capabilities of the university with the commercialization capabilities of a small business,” said Al Wicks, professor of mechanical engineering (ME) at Virginia Tech and faculty advisor to the team. http://www.me.vt.edu/people/faculty/wicks.html

They took home third place honors in 2007 when their vehicle completed DARPA’s 60-mile course in less than six hours, with no human intervention allowed past the starting line.

The four GUSS vehicles headed to Hawaii are an outgrowth of the technology developed for these DARPA competitions, Wicks said. The sensors have been greatly improved, as well as the perception, planning, and control algorithms to navigate complex environments.

The Urban Challenge featured a cooperative environment with well-defined roads for the competition. When the GUSS vehicles are used by the Marine Corps in Hawaii, they will be “off-road and not in a cooperative environment,” Wicks said. “This is a big step forward in autonomous vehicles.”

Michael Fleming, a Virginia Tech ME graduate and the founder and chief executive officer of TORC, explained the team synergism, saying “I believe our team of government, academia, and industry all working together has provided the Marine Corps with a well-balanced solution.”

As an example, existing algorithms developed by students under previous TORC/Virginia Tech partnerships, were used to create a customized version of the TORC AutonoNav (autonomous navigation system) product to provide the advanced off-road tactical behaviors required to meet the needs of the Marine Corps Warfighting Lab.

The rapid development and experimentation on the GUSS project was made possible through the use of TORC’s Robotic Building Blocks product line, said David Cutter, marketing manager at TORC. This enabled Virginia Tech engineers to leverage off-the-shelf technologies and focus on system integration challenges. The entire development process was completed in less than a year, with the first prototype delivered for testing in six months. The additional three vehicles were produced in the next five months to be shipped to the RIMPAC exercises.

The WaySight, developed by TORC, is the primary operator interface for controlling the GUSS vehicles. Using the one-pound handheld unit, Marines are able to command the unmanned vehicles in several modes depending on the mission. The operator may use the WaySight to rapidly plan a new path, take remote control of the vehicle, or direct it to follow at a safe distance with the autonomous navigation system taking over.

The project is part of a five-year contract between the Naval Surface Warfare Center Dahlgren Division and Virginia Tech that is supporting a number of different projects. The contract is an on-going agreement between Dahlgren and Virginia Tech’s Institute for Critical Technology and Applied Science (ICTAS) to foster innovative research.

The engineering students who participated in the project and their hometowns are: Patrick Currier of Murfreesboro, Tenn., Phillip Tweedy of Lynchburg, Va., James May of Atlanta, Ga., Jason Doyle of Blue Ridge, Va., and Everett Braden of Roanoke, Va.

Further information may be obtained from the following:
Virginia Tech: Al Wicks, awicks@vt.edu
TORC: David Cutter, cutter@torctech.com
Naval Surface Warfare Center Dahlgren Division, Brent Azzarelli, brent.j.azzarelli@navy.mil

Lynn Nystrom | Newswise Science News
Further information:
http://www.vt.edu

More articles from Automotive Engineering:

nachricht The car of the future – sleeper cars and travelling offices too?
18.06.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Self-driving cars for country roads
07.05.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>