Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Johnson Controls introduces innovative production process for lightweight door panels made of natural fibers

22.05.2012
Intelligent solutions for interior, seating structure and electronics save weight and increase quality and comfort

Johnson Controls, a global leader in automotive seating, interiors and electronics, is providing a series of innovative door panels, seat structures and instrument clusters for the new BMW 3 Series.


Source: Johnson Controls Automotive Experience

The door panels are made using a combination of natural fibers and plastic that are 20 percent lighter than conventional components. The seat structures for the driver's seat save three to four kilograms depending on the model. The instrument cluster features an Automotive Pixel Link (APIX*) high-speed, point-to-point connection.

"With our innovative products, we are helping BMW make the new 3 Series comfortable and sustainable. We offer high-quality, lighter weight components that reduce fuel consumption," said Beda Bolzenius, president of Johnson Controls Automotive Experience. "We also use renewable and environmentally-sound raw materials in the interior components."

The non-visible door panel elements for the new BMW 3 Series sedan and sports wagon models are largely made of wood fiber. The natural fiber carrier is directly molded with plastic. This innovative production method makes the door panel considerably lighter. A state- of-the-art process known as groove lamination is used to apply the fabric or leather trim on the door panel. This process involves the trim being joined in recesses, eliminating the need for an additional component and further reducing weight.

Four special features characterize the seat structure of the new BMW 3 Series. The use of high-strength steel means it is both stable and lightweight. The low seat back pivot point makes the seat particularly comfortable as it snugly fits the occupant's back. The structure also offers a very finely graduated recliner to ensure the best sitting position. Adjusting motors using four-pole technology, in some cases with rare-earth magnets that have a stronger magnetic field than conventional ferrite magnets, are used in the electrically adjustable seats.

This means they need a smaller installation space and are approximately 200 grams lighter. With up to four motors per seat, this also enables a significant weight reduction. The seat structures are modular in design. They are available with four and eight-way functionality for four and five-door models. There is also a version with an easy-entry function for two-door models.

The basic instrument cluster for the new BMW 3 Series has day and night design and not only offers high-quality analog displays and LED pilot lights but also a 2.7-inch TFT display. The instrument cluster features a bidirectional APIX* high-speed point-to-point connection that facilitates robust image and control data transmission using just one interface. This technology is used in displays and stepper motors on the design circuit board to communicate with the electronics on the PCB (printed circuit board) behind it. Data are transferred at 250 megabits per second, with the APIX technology facilitating up to 3 gigabits per second. Johnson Controls has engineered new solutions with respect to software and electromagnetic compatibility for the use of APIX.

Digital images are available online from www.johnsoncontrols.co.uk/press.

About Johnson Controls

Johnson Controls is a global diversified technology and industrial leader serving customers in more than 150 countries. Our 162,000 employees create quality products, services and solutions to optimize energy and operational efficiencies of buildings; lead-acid automotive batteries and advanced batteries for hybrid and electric vehicles; and interior systems for automobiles. Our commitment to sustainability dates back to our roots in 1885, with the invention of the first electric room thermostat. Through our growth strategies and by increasing market share we are committed to delivering value to shareholders and making our customers successful.

About Johnson Controls Automotive Experience

Johnson Controls is a global leader in automotive seating, overhead systems, door and instrument panels, and interior electronics. We support all major automakers in the differentiation of their vehicles through our products, technologies and advanced manufacturing capabilities. With 240 locations worldwide, we are where our customers need us to be. Consumers have enjoyed the comfort and style of our products, from single components to complete interiors. With our global capability we supply approximately 50 million cars per year.

*APIX is a registered trademark of Inova Semiconductors

Please do not hesitate to contact us if you would like more
information:
Johnson Controls GmbH
Automotive Experience
Industriestraße 20-30
51399 Burscheid Germany
Ulrich Andree
Tel.: +49 2174 65-4343
Fax: +49 2174 65-3219
E-mail: ulrich.andree@jci.com

Ulrich Andree | Johnson Controls
Further information:
http://www.johnsoncontrols.co.uk

Further reports about: APIX AUTOmotive Experience Johnson Controls electric vehicle raw material

More articles from Automotive Engineering:

nachricht The cold-start dilemma
27.02.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Three Autonomous Mini Buses for Karlsruhe
14.05.2019 | FZI Forschungszentrum Informatik

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

New molten metal hybrid filters from TU Freiberg will make components even safer and more resistant in the future

28.02.2020 | Materials Sciences

Polymers get caught up in love-hate chemistry of oil and water

28.02.2020 | Life Sciences

Two NE tree species can be used in new sustainable building material

28.02.2020 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>