Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved Performance thanks to Reduced Weight

24.07.2017

Scientists of the Federal Cluster of Excellence MERGE in Chemnitz develop a Lightweight Wheel for more Safety and Comfort on the Road

Researchers of the Federal Cluster of Excellence “MERGE: Technologies for Multifunctional Lightweight Structures” at Chemnitz University of Technology and their partners from the Fraunhofer Institute for Machine Tools and Forming Technology (IWU) have created a successful lightweight design with immense importance for tomorrow’s automotive construction:


Alexander Hackert (on the left) and Tristan Timmel with the novel lightweight wheel.

Photo: Chemnitz University of Technology/Rico Welzel

They were able to reduce the weight of a car wheel by more than 50% through the use of novel materials and structures. Compared to a conventional steel wheel of about 6.8 kg, the novel lightweight wheel weighs only 3.02 kg. The three-part sandwich wheel rim consists of a core of aluminium foam and top layers made of thermoplastic fibre-plastic compounds.

This sandwich design takes advantage of the materials’ respective special properties. Such multi-material-designs are more and more frequently used in the automotive sector. Thus, not only the weight but also the emission of pollutants by motor vehicles can be reduced through combining novel processing technologies with smart material systems.

The combination of thermoplastic fibre-plastic-compounds with metal foams has great lightweight potential, especially for producing on a large scale, as the research fellow at the Cluster of Excellence MERGE Alexander Hackert points out: “Highly porous metal foams such as aluminium foam have excellent mechanical properties at a low density while at the same time they can potentially absorb a lot of energy. That is a contribution to driving comfort, especially when going round a turn in the road. Additionally, they have a distinct damage tolerance.”

The special compound at the core renders the wheel rim extremely stiff and light at the same time. The outside surface of the aluminium foam core is very thin and closed, in order to provide the optimal interface to the carbon fibre-reinforced layers. In addition, there is a buffer layer with glass fibre reinforcing for the harmonisation of the difference in stiffness between the aluminium foam and the carbon fibre-reinforced layers.

“Through an immense increase in pressure when producing the part in a thermic pressing process the thermally induced residual stresses are basically locked in the component. This helps improve its performance, since the high-load areas of the wheel are already under preload”, Hackert explains.

By reducing the unsprung masses the scientists were also able to improve the driving characteristics. The vehicle becomes more agile and changes its behaviour: when the driver hits the brakes, it will stop much faster. “There are special norms and regulations for the application in real traffic, because the safety of all passengers as well as other road users must be guaranteed under all circumstances”, says Hackert.

“Even an unintended crossing onto the curb or going through a pothole must be manageable for such a wheel.” Extensive testing of the sandwich compound as well as complex simulations of the component have proven the construction principle to be adaptable to many other applications. “If we come up with a novel structure for a component we do not just want to make it different per se, but make it better”, as the engineer puts it.

Alexander Hackert’s team has already registered the design of the lightweight wheel as a utility model, and as a patent specification at the German Patent and Trademark Office (DE 20 2014 005 111 U1, DE 10 2014 009 180 A1). The wheel rim’s prototype combines all results from preliminary tests and component simulations and can now be used for the ongoing development up to the point of an actual mass-produced component.

“Our tests of the core compounds have shown the enormous potential of the wheel rim for an automotive application”, Hackert points out. He is more than optimistic that automobile manufacturers who apply alternative concepts such as electric or hydrogen drives will also will make use of the lightweight wheel made in Chemnitz for the development of novel mobility solutions.

The latest publications on sandwich compounds and the lightweight wheel:

Hackert, A.; Müller, S.; Kroll, L.: Leichtbau-Radscheibe aus Carbon-Aluschaum-Sandwich. Lightweight Design, Die Fachzeitschrift für den Leichtbau bewegter Massen 2017, Nr. 10, Issue 1, S. 10-15 DOI: 10.1007/s35725-016-0076-y

C.; Rybandt, S.; Hackert, A.; Drossel, W.: Sandwichbauteile aus Aluminiumschaumkern mit faserverstärkten Kunststoffdecklagen mit komplexer Geometrie - Querlenkerdemonstrator. Tagungsband 8. Landshuter Leichtbau-Colloquium 2017, Hochschule Landshut: Leichtbau grenzenlos, Landshut, 2017, S. 22-30 ISSN: ISBN: 978-3-9818439-0-3, ISBN: 3-9818439-0-8

Dipl.-Ing. Mario Steinebach | Technische Universität Chemnitz
Further information:
http://www.tu-chemnitz.de/

More articles from Automotive Engineering:

nachricht The car of the future – sleeper cars and travelling offices too?
18.06.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Self-driving cars for country roads
07.05.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>