Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New high-performance lithium-ion battery 'top candidate' for electric cars

24.02.2011
Scientists are reporting development of an advanced lithium-ion battery that is ideal for powering the electric vehicles now making their way into dealer showrooms.

The new battery can store large amounts of energy in a small space and has a high rate capacity, meaning it can provide current even in extreme temperatures. A report on this innovation appears in ACS' Journal of the American Chemical Society.

Bruno Scrosati, Yang-Kook Sun, and colleagues point out that consumers have a great desire for electric vehicles, given the shortage and expense of petroleum. But a typical hybrid car can only go short distances on electricity alone, and they hold less charge in very hot or very cold temperatures. With the government push to have one million electric cars on U.S. roads by 2015, the pressure to solve these problems is high. To make electric vehicles a more realistic alternative to gas-powered automobiles, the researchers realized that an improved battery was needed.

The scientists developed a high-capacity, nanostructured, tin-carbon anode, or positive electrode, and a high-voltage, lithium-ion cathode, the negative electrode. When the two parts are put together, the result is a high-performance battery with a high energy density and rate capacity. "On the basis of the performance demonstrated here, this battery is a top candidate for powering sustainable vehicles," the researchers say.

The authors acknowledge funding from WCU (World Class University) program through the Korea Science and Engineering Foundation.

ARTICLE FOR IMMEDIATE RELEASE "An Advanced Lithium Ion Battery Based on High Performance Electrode Materials"

DOWNLOAD FULL TEXT ARTICLE http://pubs.acs.org/stoken/presspac/presspac/full/10.1021/ja110522x

CONTACT:
Bruno Scrosati, Ph.D.
Department of Chemistry
University of Rome Sapienza
00185
Rome, Italy
Tel: +39 06-4462866
Fax: +39 06-491769
Email: bruno.scrosati@uniroma1.it

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Automotive Engineering:

nachricht The car of the future – sleeper cars and travelling offices too?
18.06.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Self-driving cars for country roads
07.05.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>