Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wood that Shapes Itself

16.09.2019

Report in Science Advances: Sophisticated modelling technology opens up new avenues in timber construction and digital design.

Researchers from the University of Stuttgart, ETH Zurich and the Swiss Empa have presented a method with which wood panels themselves bend into a previously calculated shape in a controlled drying process without mechanical force.


Timber construction elements that are programmed shape themselves could give the timber construction additional momentum. Picture: Urbach Tower.

University of Stuttgart, ICD/ITKE


A two-layer bilayer wood panel bends during drying (WMC: moisture content of the wood).

University of Stuttgart, ICD/ITKE

The procedure, which contributed to the production of the Urbach Tower at the Remstal Garden Show near Stuttgart, was reported on by the renowned scientific journal Science Advances in its issue of 13 September 2019.

Self-forming mechanisms can be found in nature, for example in plants that change their shape automatically in a season to release their seeds. These changes occur without mechanical or electrical influence in both two and three-dimensional directions.

If, on the other hand, wood is to be deformed into curved or twisted structures, large and energy-intensive machines and formwork are required to press the components into the desired shape.

In the study published in Science Advances, researchers from the University of Stuttgart, ETH Zurich and Empa are now showing how structurally valuable curved geometries could be used in the future while avoiding complex and wastefully mechanical forming processes.

Together, they have developed an approach in which solid wood building components bend into a predefined shape without the application of external forces. For this purpose, the scientists used state-of-the-art modelling technologies to transfer the mechanisms known from nature, which are already used in small biomedical devices, to a large scale.

Curved wood parts up to five meters long were able to form themselves. "The ingenious use of self-forming mechanism enables us to give an ancient building material such as wood new functions" explains Dylan Wood, head of the Materials Programming Research Group at the Institute for Computational Design and Construction. "This opens up new avenues for sustainable yet high-performance construction, as well as revealing a new perspective on the digital design and fabrication of large parts with complex geometries.”

Employing Unwanted Behaviors

The self-forming process is based on the natural swelling and shrinking of wood depending on its moisture content: When damp wood dries, it contracts more perpendicularly to the grain direction than along the grain. Warping is usually undesirable. Researchers, however, make targeted use of this property by gluing two layers of wood together in such a way that their fibers are oriented differently.

The resulting wood parts called “Bilayers" have a two-layer structure forming the basic building block of the new method. When the moisture content of bilayer drops, one layer shrinks more than the other. Since the two layers are firmly glued together, the wood bends. Depending on the thickness of the layers, the orientation of the fibers and the moisture content, a computer model can now be used to calculate how the parts deforms during drying. When translated to the physical arrangement of specific elements within the parts the researchers call this process "wood programming".

Curved components for roof constructions and walls have significantly a higher structural and material performance than flat parts and open up new architectural possibilities. Self-forming production now makes it possible to manufacture efficiently with a high degree of curvature in an adaptable process.

Wissenschaftliche Ansprechpartner:

Prof. Achim Menges, Dylan Wood, University of Stuttgart, Institute for Computer-Based Design, Tel.: +49 (0)711/685 827 86, E-Mail: mail@icd.uni-stuttgart.de

Originalpublikation:

Grönquistet P et al. Analysis of hygroscopic self-shaping wood at large scale for curved mass timber structures. Science Advances (2019),

Weitere Informationen:

https://advances.sciencemag.org/content/5/9/eaax1311 (Original Publication
https://icd.uni-stuttgart.de/?p=23336 (Video)

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft

More articles from Architecture and Construction:

nachricht Mobile smart homes and expanded living labs: DFKI and TU Berlin make the future of living more accessible
19.02.2020 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Pollination is better in cities than in the countryside
29.01.2020 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Sweet beaks: What Galapagos finches and marine bacteria have in common

20.02.2020 | Life Sciences

Social networks reveal dating in blue tits

20.02.2020 | Life Sciences

More focus and comfort at telephone workstations

20.02.2020 | Communications Media

VideoLinks
Science & Research
Overview of more VideoLinks >>>