Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why does concrete swell and crack?

05.10.2018

When bridges, dam walls and concrete foundations form cracks, AAR is often the culprit: the alkali-aggregate reaction. It causes the concrete to swell and renders renovations or even reconstructions necessary. A project funded by the Swiss National Science Foundation (SNSF) and coordinated by Empa is studying the “concrete disease”.

Unfortunately, concrete does not last forever. The ravages of time also take their toll on concrete structures in Switzerland. Not only are reinforced structures like bridges affected, but also concrete buildings without any reinforcement, such as dam walls. One cause is referred to as the alkali-aggregate reaction (AAR). It can affect all concrete structures in open air.


The cracks in the concrete caused by AAR form in tiny crystal fissures (middle photo) and are immediately visible to the naked eye (left-hand photo).

Empa


Concrete structures that have been damaged by AAR (alkali-aggregate reaction) exhibit these typical cracks. The dark color around the edges of the cracks is caused by leaking AAR products.

Empa

With AAR, the basic ingredients in the concrete are actually the problem: Cement – the main component of concrete – contains alkali metals such as sodium and potassium. Moisture in the concrete reacts with these alkali metals to form an alkaline solution.

The main components of concrete are sand and gravel, which in turn contain silicates such as quartz or feldspar. The alkaline water reacts with these silicates and forms a so-called alkali calcium silicate hydrate. This mineral accumulates moisture in its structure, which causes it to expand and gradually crack the concrete from within.

The striking thing here: The very same chemical reaction takes place in numerous pieces of gravel within the concrete; the small stones crack one by one. The pressure that can be exerted on an entire structure due to this micro-reaction is huge: A dam wall, for instance, can expand by a few decimeters. This can cause damage to the lateral connecting points to the rock or deformations in the sluice area.

The reaction takes place gradually, with the first damage only becoming noticeable in affected structures after ten to 15 years. However, the continual swelling of the concrete can seriously reduce the structures’ service life.

In 2015 a team of scientists from Empa and the Paul Scherrer Institute (PSI) succeeded in identifying the structure of the aqueous crystal that triggers the swelling in concrete. This structure had previously been the subject of much speculation.

The discovery inspired an interdisciplinary research project funded by the Swiss National Science Foundation (SNSF). Besides Empa and PSI, two EPFL institutes are also involved. The research activities are coordinated by Empa researcher Andreas Leemann. “We want to study and understand AAR in every dimension, from the atomic level and length scales in the Angstrom range to entire structures on a centimeter and meter scale,” explains Leemann.

Six projects cover all dimensions

Six sub-projects were defined in the SNSF Sinergia project: PSI is using synchrotron radiation to study the structure of the reaction products in order to explain their sources. The key parameters for triggering the silicates and the composition of the reaction products formed at the outset are being studied at EPFL; moreover, computer simulations are being used to investigate the impact of the swelling on structures.


And at Empa, the formation of the cracks in the concrete is being investigated at spatial and temporal resolution using computer tomography at the Empa X-Ray Center, and the aqueous crystals are being synthesized in the lab. This enables the researchers to obtain larger quantities of the substance usually found in nano- to micrometer-sized cracks in pieces of gravel. Only with larger quantities of the substance in question can physical properties be determined accurately, however.

Not only should the findings help understand AAR much better, they should also reveal ways to avoid damage – and thus costs.“We are already in the throes of decoding the phenomenon, which has only been understood in fragments until now,” says Leemann. The four-year project got underway in May 2017. The first results are already in.

The next step will involve linking the individual groups more closely and building on the results of the partners. In the end, this should yield a more complete picture of AAR that enables the condition of and the risk to concrete structures to be gaged more effectively and the fate of the afflicted buildings to be supervised more scientifically.

Wissenschaftliche Ansprechpartner:

Andreas Leemann
Concrete / Construction Chemistry
Phone +41 58 765 44 89
Andreas.Leemann@empa.ch

Weitere Informationen:

https://www.empa.ch/web/s604/aar

Rainer Klose | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

More articles from Architecture and Construction:

nachricht For a better climate in the cities: Start-up develops maintenance-free, evergreen moss façades
25.06.2019 | Technische Universität Kaiserslautern

nachricht 5G transmission masts made of wood for an attractive and sustainable cityscape
20.05.2019 | Technische Universität Kaiserslautern

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Genetic differences between strains of Epstein-Barr virus can alter its activity

18.07.2019 | Health and Medicine

Algae-killing viruses spur nutrient recycling in oceans

18.07.2019 | Life Sciences

Machine learning platform guides pancreatic cyst management in patients

18.07.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>