Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


When Concrete learns to pre-stress itself


Concrete is by far the most widely used building material in the world – and the trend is rising. Using a new type of concrete formula, an Empa team has succeeded in producing self-prestressed concrete elements. This innovation makes it possible to build lean structures much more cost-effectively – and save material at the same time.

More than ten billion tonnes of concrete are produced and used worldwide every year. This is more than all other building materials combined. By way of comparison, steel and asphalt – both of which are also used very abundantly – are each produced at around 1.5 billion tonnes annually.

Empa researchers Mateusz Wyrzykowski and Volha Semianiuk, with the help of laboratory technician Sebastiano Valvo, are investigating new possibilities for self-tensioned CFRP concrete elements.


A beam made of self-pre-stressed concrete with carbon fiber reinforced plastic (CFRP) as reinforcement.


Even though the energy required to produce one tonne of concrete and the emissions that go with it are lower than for other building mate-rials, the huge quantities are responsible for a significant environmental impact.

Cement, the binding agent in concrete, is the main culprit. Just under three percent of the world’s primary energy is used for the production of four billion tonnes of cement required annually. Cement production is also responsible for up to eight percent of the global CO2 emissions.

According to estimates, the annual production of concrete and cement could even increase by another 50 percent by 2050 due to a growing demand in developing countries. Replacing concrete is not an easy task, though; the building material simply offers too many advantages.

These figures show that a more sustainable use of concrete – from production and efficient use of materials to demolition and recycling – will have an enormous impact on our environment and society.

Patents in Europe and the US

Empa scientists are looking into developing methods to make concrete elements leaner, yet durable and stable, so that materials consumption is reduced. A team led by Giovanni Terrasi, Pietro Lura and Mateusz Wyrzykowski was recently granted a European and a US patent for a self-pre-stressing concrete technology that achieve just this.

Pre-stressing is generally used when a concrete element has to withstand very high loads – for instance, beams, bridges or cantilevered structures. In a conventional pre-tensioning technology, the reinforcements or tendons – usually made of steel – are anchored on both sides of the element before the concrete is cast, put under tension and re leased again after the concrete has set.

The forces generated in the tendons place the concrete under compressive stress: The element is pulled together by the pre-tensioned reinforcement on its inside, so to speak – and is thus much more stable. The problem: Steel is susceptible to corrosion. Therefore, the concrete layer around the pre-stressing steel must have a certain thickness.

Carbon Fibres instead of Steel

As early as in the 1990s, carbon fiber-reinforced polymers (CFRP) were used to replace steel reinforcement. Because CFRP does not corrode, it is possible to produce significantly leaner concrete components – with very similar structural properties.

“But if you want to pre-stress these CFRP reinforcements in order to be able to build even thinner structures with a higher load-bearing capacity, you reach your limits,” says Wyrzykowski. Very expensive pre-stressing beds are required and the anchoring of CFRP bars is much more complicated than that of steel. Thus, pre-stressed CFRP high-performance concrete is still not very widely used.

Expanding Concrete

The Empa team has now succeeded in completely dispensing with anchoring on both sides of the concrete element, as the concrete does the work by itself: Thanks to a special formula, the concrete expands as it hardens. As a result of this expansion, the concrete puts the CFRP bars in its interior under tension and thus automatically pre-stresses itself.

In their laboratory tests, the researchers were able to show that the self-pre-stressed CFRP concrete elements could bear loads comparable to those that were conventionally pre-stressed – around three times more than a non-pre-stressed CFRP concrete element.

“Our technology opens up completely new possibilities in lightweight construction,” says Wyrzykowski. “Not only can we build more stable structures, we also use considerably less material.” The Empa researcher also envisions completely new fields of application:

“We can easily pre-stress in several directions at the same time, for example for thin concrete slabs or filigree curved concrete shells,” he says, looking to the future. These new applications are now being developed further in cooperation with industry partner BASF.

Wissenschaftliche Ansprechpartner:

Dr. Mateusz Wyrzykowski
Concrete & Asphalt
Phone +41 58 765 45 41

Editor / Media contact

Stephan Kälin
Phone +41 58 765 49 93

Weitere Informationen:

Rainer Klose | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

More articles from Architecture and Construction:

nachricht TU Graz researchers want to fundamentally improve concrete diagnostics
29.06.2020 | Technische Universität Graz

nachricht The digital construction site: A smarter way of building with mobile robots
02.06.2020 | Fraunhofer Italia

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

Science & Research
Overview of more VideoLinks >>>