Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supported by software, Kaiserslautern architects assemble wooden dome like a puzzle

19.09.2018

Wood is becoming increasingly popular as a sustainable building material. At the Technische Universität Kaiserslautern (TUK), the team led by Assistant Professor Dr Christopher Robeller has developed software that calculates how, for example, complex wooden building parts can best be assembled from individual parts, similar to a puzzle. A milling machine manufactures the parts according to these specifications. They only have to be assembled afterwards. What is special: Only wood is used, also connecting elements are made of natural material. This is how the researchers recently built a dome. Construction companies could use the technology by means of apps to build quickly and sustainably.

People have been using wood for constructing buildings material for thousands of years. While the material has tended to fall behind in recent years, demand has been rising again recently. “New treatment methods also play a role here that make wood better usable as a building material,” says Assistant Professor Christopher Robeller, who heads the “Digital Timber Construction DTC” working group at the TUK in the Faculty of Architecture.


Only wood is used, also connecting elements are made of natural material.

Credits: Robeller


Assistant Prof Dr Christopher Robeller

Credits: Robeller

Together with his team, Robeller has developed software that can also be used to produce more complex buildings and components from wood. The architects rely only on the natural material, other building materials are no longer necessary.

“Our computer programme first calculates how many individual parts our construction should ideally consist of,” explains the Professor. “It also determines which shapes these should preferably have and in which way they have to be assembled.” Various factors such as statics, geometry and joining play a role here, which ultimately guarantee the stability of the end product. “A milling machine then implements the software specifications and cuts the corresponding wooden parts to size,” he continues. Similar to a puzzle, the individual pieces can easily be put together afterwards.

Robeller and his team recently used the process to build a dome with a diameter of four meters. “For the larger parts, we used cross laminated boards made of coniferous wood. This standard building material is relatively inexpensive and has a very good strength-to-weight ratio,” says Robeller. “The smaller connecting elements, on the other hand, are made of hardwood.”

The connecting parts always have the same shape. In order to connect the larger wooden parts in a stable way, the software also takes into account how and in which direction the connectors must be optimally installed at which point. All in all, the team assembled the 58 components in just a few hours. Previous methods have not made it possible to build such a vault solely from wood.

Although there are other domes made of the natural material, however, the individual parts still had to be connected with nails or screws. “In our process, we do not need a complex and expensive substructure,” explains the architect. “The only tool needed is a hammer to insert the connectors. And a few drops of adhesive to act as a safety device.” Robeller and his team assume that dome roofs with a diameter of 30 meters can be realized with this technology.

The construction industry could use the process with the help of an app. In the future, it could thus use digitally prefabricated components for buildings and assemble them quickly and precisely. In addition, wood will play an increasingly important role as a sustainable building material.

The Kaiserslautern architects realized the experimental construction together with the following partners from industry: x-Fix, the manufacturer of the wood connecting elements, HOKU OG CNC Fertigung, the Austrian wood panel manufacturer Hasslacher Norica Timber and the company Gemson, also from Austria, which provided the solid wood supports for the dome prototype.

Timber construction has long been a research focus at the TUK. In the “T-Lab - Holzarchitektur und Holzwerkstoffe” [T-Lab - Wood Architecture and Wood-Based Panels], a competence centre for wood, four working groups from the specialist area of architecture are researching how wood can be used to a greater extent in the construction industry in the future. New digital technologies also play an important role here. The area of research is located at the interface of architecture, computer science, civil engineering and manufacturing technology.

The team of the TU Kaiserslautern recently presented the wooden dome at the wood fair in Klagenfurt. A video showing the building of the dome is available at www.architektur.uni-kl.de/dtc/2018/08/29/holzmesse-klagenfurt/

Wissenschaftliche Ansprechpartner:

Assistant Prof Dr Christopher Robeller
Digital Timber Construction DTC
Phone: +49 (0)631 205-3994
E-mail: christopher.robeller(at)architektur.uni-kl.de

Weitere Informationen:

http://www.architektur.uni-kl.de/dtc/2018/08/29/holzmesse-klagenfurt/

Melanie Löw | Technische Universität Kaiserslautern

More articles from Architecture and Construction:

nachricht Why does concrete swell and crack?
05.10.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht A new way of thinking for the built environment
01.10.2018 | Universität Stuttgart

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>