Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supported by software, Kaiserslautern architects assemble wooden dome like a puzzle

19.09.2018

Wood is becoming increasingly popular as a sustainable building material. At the Technische Universität Kaiserslautern (TUK), the team led by Assistant Professor Dr Christopher Robeller has developed software that calculates how, for example, complex wooden building parts can best be assembled from individual parts, similar to a puzzle. A milling machine manufactures the parts according to these specifications. They only have to be assembled afterwards. What is special: Only wood is used, also connecting elements are made of natural material. This is how the researchers recently built a dome. Construction companies could use the technology by means of apps to build quickly and sustainably.

People have been using wood for constructing buildings material for thousands of years. While the material has tended to fall behind in recent years, demand has been rising again recently. “New treatment methods also play a role here that make wood better usable as a building material,” says Assistant Professor Christopher Robeller, who heads the “Digital Timber Construction DTC” working group at the TUK in the Faculty of Architecture.


Only wood is used, also connecting elements are made of natural material.

Credits: Robeller


Assistant Prof Dr Christopher Robeller

Credits: Robeller

Together with his team, Robeller has developed software that can also be used to produce more complex buildings and components from wood. The architects rely only on the natural material, other building materials are no longer necessary.

“Our computer programme first calculates how many individual parts our construction should ideally consist of,” explains the Professor. “It also determines which shapes these should preferably have and in which way they have to be assembled.” Various factors such as statics, geometry and joining play a role here, which ultimately guarantee the stability of the end product. “A milling machine then implements the software specifications and cuts the corresponding wooden parts to size,” he continues. Similar to a puzzle, the individual pieces can easily be put together afterwards.

Robeller and his team recently used the process to build a dome with a diameter of four meters. “For the larger parts, we used cross laminated boards made of coniferous wood. This standard building material is relatively inexpensive and has a very good strength-to-weight ratio,” says Robeller. “The smaller connecting elements, on the other hand, are made of hardwood.”

The connecting parts always have the same shape. In order to connect the larger wooden parts in a stable way, the software also takes into account how and in which direction the connectors must be optimally installed at which point. All in all, the team assembled the 58 components in just a few hours. Previous methods have not made it possible to build such a vault solely from wood.

Although there are other domes made of the natural material, however, the individual parts still had to be connected with nails or screws. “In our process, we do not need a complex and expensive substructure,” explains the architect. “The only tool needed is a hammer to insert the connectors. And a few drops of adhesive to act as a safety device.” Robeller and his team assume that dome roofs with a diameter of 30 meters can be realized with this technology.

The construction industry could use the process with the help of an app. In the future, it could thus use digitally prefabricated components for buildings and assemble them quickly and precisely. In addition, wood will play an increasingly important role as a sustainable building material.

The Kaiserslautern architects realized the experimental construction together with the following partners from industry: x-Fix, the manufacturer of the wood connecting elements, HOKU OG CNC Fertigung, the Austrian wood panel manufacturer Hasslacher Norica Timber and the company Gemson, also from Austria, which provided the solid wood supports for the dome prototype.

Timber construction has long been a research focus at the TUK. In the “T-Lab - Holzarchitektur und Holzwerkstoffe” [T-Lab - Wood Architecture and Wood-Based Panels], a competence centre for wood, four working groups from the specialist area of architecture are researching how wood can be used to a greater extent in the construction industry in the future. New digital technologies also play an important role here. The area of research is located at the interface of architecture, computer science, civil engineering and manufacturing technology.

The team of the TU Kaiserslautern recently presented the wooden dome at the wood fair in Klagenfurt. A video showing the building of the dome is available at www.architektur.uni-kl.de/dtc/2018/08/29/holzmesse-klagenfurt/

Wissenschaftliche Ansprechpartner:

Assistant Prof Dr Christopher Robeller
Digital Timber Construction DTC
Phone: +49 (0)631 205-3994
E-mail: christopher.robeller(at)architektur.uni-kl.de

Weitere Informationen:

http://www.architektur.uni-kl.de/dtc/2018/08/29/holzmesse-klagenfurt/

Melanie Löw | Technische Universität Kaiserslautern

More articles from Architecture and Construction:

nachricht When Concrete learns to pre-stress itself
15.07.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht TU Graz researchers want to fundamentally improve concrete diagnostics
29.06.2020 | Technische Universität Graz

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>