Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulations aiding study of earthquake dampers for structures

31.07.2013
Researchers have demonstrated the reliability and efficiency of "real-time hybrid simulation" for testing a type of powerful damping system that might be installed in buildings and bridges to reduce structural damage and injuries during earthquakes.

The magnetorheological-fluid dampers are shock-absorbing devices containing a liquid that becomes far more viscous when a magnetic field is applied.


Earthquake-engineering researches at the Harbin Institute of Technology in China work to set up a structure on a shake table for experiments to study the effects of earthquakes. Purdue University civil engineering students are working with counterparts at the institute to study the reliability of models for testing a type of powerful damping system that might be installed in buildings and bridges to reduce structural damage and injuries during earthquakes. (Photo courtesy of Harbin Institute of Technology)

"It normally feels like a thick fluid, but when you apply a magnetic field it transforms into a peanut-butter consistency, which makes it generate larger forces when pushed through a small orifice," said Shirley Dyke, a professor of mechanical engineering and civil engineering at Purdue University.

This dramatic increase in viscosity enables the devices to exert powerful forces and to modify a building's stiffness in response to motion during an earthquake. The magnetorheological-fluid dampers, or MR dampers, have seen limited commercial use and are not yet being used routinely in structures.

Research led by Dyke and doctoral students Gaby Ou and Ali Ozdagli has now shown real-time hybrid simulations are reliable in studying the dampers. The research is affiliated with the National Science Foundation's George E. Brown Jr. Network for Earthquake Engineering Simulation (NEES), a shared network of laboratories based at Purdue.

Dyke and her students are working with researchers at the Harbin Institute of Technology in China, home to one of only a few large-scale shake-table facilities in the world.

Findings will be discussed during the NEES Quake Summit 2013 on Aug. 7-8 in Reno. A research paper also was presented in May during a meeting in Italy related to a consortium called SERIES (Seismic Engineering Research Infrastructures for European Synergies). The paper was authored by Ou, Dyke, Ozdagli, and researchers Bin Wu and Bo Li from the Harbin Institute.

"The results indicate that the real-time hybrid simulation concept can be considered as a reliable and efficient testing method," Ou said.

The simulations are referred to as hybrid because they combine computational models with data from physical tests.

"You have physical models and computational models being combined for one test," Dyke said.

Researchers are able to perform structural tests at slow speed, but testing in real-time – or the actual speed of an earthquake – sheds new light on how the MR dampers perform in structures. The real-time ability has only recently become feasible due to technological advances in computing.

"Sometimes real-time testing is necessary, and that's where we focus our efforts," said Dyke, who organized a workshop on the subject to be held during the NEES meeting in Reno. "This hybrid approach is taking off lately. People are getting very excited about it."

Ozdagli also is presenting related findings next week during the 2013 Conference of the ASCE Engineering Mechanics Institute in Evanston, Ill.

The simulations can be performed in conjunction with research using full-scale building tests. However, there are very few large-scale facilities in the world, and the testing is time-consuming and expensive.

"The real-time hybrid simulations allow you to do many tests to prepare for the one test using a full-scale facility," Dyke said. "The nice thing is that you can change the numerical model any way you want. You can make it a four-story structure one day and the next day it's a 10-story structure. You can test an unlimited number of cases with a single physical setup."

The researchers will present two abstracts during the Reno meeting. One focuses on how the simulation method has been improved and the other describes the overall validation of real-time hybrid simulations.

To prove the reliability of the approach the researchers are comparing pure computational models, pure physical shake-table tests and then the real-time hybrid simulation. Research results from this three-way comparison are demonstrating that the hybrid simulations are accurate.

Ou has developed a mathematical approach to cancel out "noise" that makes it difficult to use testing data. She combined mathematical tools for a new "integrated control strategy" for the hybrid simulation.

"She found that by integrating several techniques in the right mix you can get better performance than in prior tests," Dyke said.

The researchers have validated the simulations.

"It's a viable method that can be used by other researchers for many different purposes and in many different laboratories," Dyke said.

Much of the research is based at Purdue's Robert L. and Terry L. Bowen Laboratory for Large-Scale Civil Engineering Research and has been funded by the NSF through NEES. A portion is supported by the Sohmen Fund, an endowment established by Purdue alumnus Anna Pao Sohmen to facilitate faculty and student exchange with the Harbin Institute of Technology and Ningbo University. The fund is managed by International Programs at Purdue.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Source: Shirley Dyke, 765-494-7434, sdyke@purdue.edu

Note to Journalists: Information about the NEES annual Quake Summit 2013 is available at http://nees.org/quakesummit2013. An electronic copy of the SERIES research paper is available from Emil Venere, 765-494-4709, venere@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Architecture and Construction:

nachricht Construction Impact Guide
18.05.2018 | Hochschule RheinMain

nachricht New, forward-looking report outlines research path to sustainable cities
24.01.2018 | National Science Foundation

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>