Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulating future noise in order to prevent it

23.02.2016

Noise is disturbing and can be harmful to health. Empa researchers have now succeeded in simulating road noise by means of «auralisation». The aim is to make noise audible along traffic routes that are merely in the planning stage – and thus include countermeasures at the same time.

Auralisation is understood as making audible those sound events that will only occur in the future. Until a few years ago, it was mainly used by interior designers for optimising room acoustics.


Using this experimental set-up, the Empa scientists recorded the tyre noises they have taken into account as a source in the auralisation model, alongside the engine-related driving noises.

In Empa's «TAURA» project funded by the Swiss National Science Foundation (SNF) a research team around Reto Pieren is now working on an auralisation model, which simulates the noise of a car accelerating past an observer. This model thus makes it possible to take account of precautions to reduce noise, even in the planning of road construction projects.

Developing such an auralisation model is easier said than done. The noise caused by a car speeding past originates from different sources, which have to be entered into the «emission module» in the computer model. Firstly there is the engine that roars in the ears, particularly at high speeds. Although speed, vehicle type and driving style also influence the engine-related driving noise.

Then the tyres also generate noise as they roll along the road. This is largely dependent on the type of road surface and make of tyre. Pieren and his colleagues would like in future to add further sources of noise into their auralisation model, such as the effect of different road surfaces and wind noises.

Thousands of parameters – that is how complex the noise of vehicles can be

The researchers firstly had to identify the extent of all these influences. To this end, they recorded the driving noise of various makes of vehicle, for instance of a VW Touran, a Ford Focus 1.8i or a Skoda Fabia. These measurements were taken from several microphone positions and at different speeds. The researchers also varied the tyre models, engine load and revolutions per minute.

They then extracted the sound characteristics from these recordings and transcribed these as parameters in their auralisation model. They ended up with a total of several thousand such parameters, which cause a completely different driving noise depending on interaction.

Although even this was not sufficient: next they had to account for propagation phenomena such as the Doppler effect, sound absorption in air and reduction in noise due to the distance between the source of the noise and the observer. An observer will perceive noise differently depending on his or her position in relation to the source of the noise and how each moves relative to the other. We all know the Doppler effect from our daily lives: the siren on an emergency vehicle has a high pitch whenever the vehicle is approaching and a comparably lower pitch when it is driving away again.

How irritating do we perceive noises to be?

The modelled signals finally have to be transformed into sound via headphones or a pair of speakers. Noise first arises in our consciousness, however, so is perceived differently from listener to listener and is not easily registered in physical measurement units. That is why test subjects were asked to listen to the simulated driving noises and make statements about their irksomeness, the level of noise induced impairment. Objective relationships can be established whenever several test subjects have assessed different noises according to their irksomeness, although noise is a subjective factor.

Noise has a different effect on human beings depending on the time of day, health condition and age. Accordingly the consequences for health extend from intermittent sleep deprivation through to an increased risk of cardiovascular disease. Noise reduction measures must therefore be taken into account when planning residential and industrial zones and traffic routes in order to prevent such impairment. This is where town planners, political decision makers and the public need indications of the anticipated noise emissions. Standard measures can be calculated nowadays – but auralisation can help with evaluating new ideas for noise optimisation. This is how Empa researchers contribute to noise reduction using their auralisation model.

Also of interest to the research community

Besides the practical, there is also a scientific benefit. There was no such detailed auralisation model available for simulating road noise before Reto Pieren and his colleagues started their research. In particular the simulation of accelerating vehicles is new. To this extent the research group is involved in pioneering work in the field of auralisation. The scientists plan to conduct initial experiments with sample recordings in their in-house audio laboratory within the next few weeks.

Weitere Informationen:

http://www.empa.ch/web/s604/-/auralisierung-von-beschleunigenden-autos

Cornelia Zogg | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt
Further information:
https://www.empa.ch

Further reports about: Doppler effect Empa Simulating computer model high speeds reduction traffic routes

More articles from Architecture and Construction:

nachricht Construction Impact Guide
18.05.2018 | Hochschule RheinMain

nachricht New, forward-looking report outlines research path to sustainable cities
24.01.2018 | National Science Foundation

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>