Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Shaky’ Plan: Quake Experiments May Lead to Sturdier Buildings

17.12.2010
Cold-formed steel has become a popular construction material for commercial and industrial buildings, but a key question remains: How can these structures be designed so that they are most likely to remain intact in a major earthquake?

To help find an answer, Johns Hopkins researchers have been awarded a three-year $923,000 National Science Foundation grant to study how seismic forces affect mid-rise cold-formed steel buildings, up to nine stories high.

The work will include development of computer models, as well as testing of two-story buildings placed atop full-size “shake tables” that replicate forces up to and greater than those of any modern-day earthquake.

Lead researcher Benjamin Schafer of the university’s Whiting School of Engineering said there is a critical need for the data these experiments should yield.

“We do have a conservative framework for how to build cold-formed steel structures to withstand earthquakes, but we don’t have all of the details,” said Schafer, the Swirnow Family Scholar Professor and chair of the Department of Civil Engineering. “Beyond avoiding complete collapse, we don’t know how a lot of building materials will be damaged when certain levels of earthquakes occur. Information gaps exist for a lot of building materials, but the gaps for cold-formed steel are really big. We’re trying to fill in some of those gaps in knowledge.”

The cold-formed steel pieces that are commonly used to frame low- and mid-rise buildings are made by bending about 1-millimeter-thick sheet metal, without heat, into structural shapes. These components are typically lighter and less expensive than traditional building systems and possess other advantages. For example, cold-formed steel pieces are more uniform than wooden components and do not share wood’s vulnerability to termites and rot. Cold-formed steel also is considered a “green” material because modern producers use 100 percent recycled metal.

Structural engineers who design cold-formed steel buildings need more information about how the material will perform during earthquakes, Schafer said, in part because of revised thinking in the construction industry.

“The old approach was to just make sure the building didn’t fall down in an earthquake, even if it was no longer safe or was too badly damaged to be used afterward,” he said. “Now, we’re focusing on what you can do to bring it up to a higher level of performance to make sure that the building can still be used after an earthquake, when desired.”

Some of the motivation for this is coming from the insurance companies and business owners who are economically tied to such structures. If a critical warehouse or a major customer service center can continue to operate after an earthquake, the business owners will likely incur lower losses.

“For this reason, a sturdier building can lead to lower insurance rates and provide a level of business confidence for certain owners,” Schafer said.

But how can a business owner or insurance company predict how well a cold-formed steel building will stand up to an earthquake? Current estimates rely on a technique that tests how quake-like forces affect a single portion of a wall. Schafer’s study, in contrast, will treat the structure as a full system that includes complete walls, floors, roofs, interior walls and exterior finishes, all of which can contribute to how well the building stays intact when severe shaking occurs.

To compile this data, Schafer and his colleagues will test building components in a structural engineering lab at Johns Hopkins. They will also develop computer models aimed at predicting how well these building components and structural designs will resist earthquake forces. In the third year of the study, the researchers will conduct full-scale building experiments at the Network for Earthquake Engineering Simulation equipment site at the University at Buffalo, State University of New York. This site has full-size shake tables that will allow the researchers to mimic the effect of an earthquake on various configurations of multi-story cold-formed steel framed buildings.

“We will attempt to ‘fail’ the buildings,” Schafer said, meaning that the level of shaking will increase until the buildings collapse. The goal will be to find structural designs that hold up at the level of the most severe modern-day earthquakes.

“The ultimate purpose of this project,” he said, “is to give structural engineers better tools to make predictions about what will happen to cold-formed steel buildings in an earthquake. That will give them more flexibility to design the whole building and will give them the validation to know that it will stand up to a certain magnitude of earthquake forces.”

Schafer’s collaborators in the study include Narutoshi Nakata, an assistant professor of civil engineering at Johns Hopkins; a Bucknell University team led by Stephen G. Buonopane, an associate professor of civil and environmental engineering who earned his civil engineering doctorate at Johns Hopkins; researchers from McGill University in Canada; and professional engineers from Devco Engineering, based in Oregon. Additional funding and support will be provided by the American Iron and Steel Institute and by Bentley Systems, a developer of engineering software.

As part of an outreach effort, students from Johns Hopkins, Bucknell University and Baltimore Polytechnic Institute also will take part in the research project.

Related links:
Research Project website: http://www.civil.jhu.edu/cfsnees/
Benjamin Schafer’s website: http://www.ce.jhu.edu/bschafer/
Narutoshi Nakata’s website: http://www.ce.jhu.edu/nakata/
Department of Civil Engineering: http://www.civil.jhu.edu/

Phil Sneiderman | Newswise Science News
Further information:
http://www.jhu.edu

More articles from Architecture and Construction:

nachricht New Generation of Cleaning Tools for CSP Plants Reduces the Water Consumption
09.11.2018 | Steinbeis-Europa-Zentrum

nachricht memory-steel - a new material for the strengthening of buildings
23.10.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>