Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing Through the Stones of Cathedrals

07.03.2019

Bamberg heritage conservationists develop new imaging process

The cathedrals of Cologne, Pisa, Ghent, Vitoria-Gasteiz und Vienna are up to one thousand years old, and they are all victims of the ravages of time. Even the Oslo Opera House, which is only ten years old, is already in need of conservation work.


Max Rahrig and his colleague Anna Luib at the Oslo Opera House.

David Höpfner/KDWT/Universität Bamberg 2016

As part of the international Nano-Cathedral project, conservationists treated a portion of its stonework with nanomaterials. The particles used are 1,000 times thinner than the diameter of a human hair, and they are said to represent a rapid, promising development. So do they work?

In order to find out, Dr. Rainer Drewello, professor of Building Preservation Sciences at the University of Bamberg, together with his colleague Max Rahrig, developed a process known as “Opto-technical Monitoring” which combines various imaging methods.

“Imaging technology is already being used in heritage conservation,” explains Drewello, “but until now, it had been all but impossible to test new materials used for stone conservation without destroying at least part of the stonework by extracting samples.”

Using the new lighting technology, Drewello can effectively execute a non-destructive and contact-free analysis of an approximately two-square-metre surface. Opto-technical Monitoring is based on a combination of high-resolution 3D imaging and VIS, ultraviolet, and infrared photography.

Whereas high-resolution 3D images serve to measure a surface and record its condition with an accuracy of 0.3 millimetres, the VIS colour photography reveals variations in surface colouring. UV fluorescence photography and infrared photography make inorganic and organic foreign substances present on the surfaces visible.

These can be preservative coating materials or biological growth such as bacterial films, lichens or mosses. Together, these four techniques provide a complete image that had never before been possible in heritage conservation. By layering images that were rendered at different times, scholars are able to make comparisons and recognise changes in the stone.

The researchers are hoping that the international, interdisciplinary Nano-Cathedral project and its 6.3 million euros in EU funding will make a significant contribution to the preservation of Europe’s cultural heritage.

The project, in which Drewello and Rahrig collaborated with 18 partners in six European countries, was completed in 2018 after a three-year runtime. The nanomaterials developed in the project are currently being made market-ready and the new monitoring techniques will be used as a quality assurance mechanism involving ongoing measurements to determine the materials’ long-term benefits.

The cathedral conservation and maintenance workshops also share an interest in the continuation of this work as they will receive the qualifications necessary to carry out the measurements themselves. And last but not least, this method will be disseminated throughout the world: Rahrig is currently employing similar methods in a project examining centuries-old wall materials in Sri Lanka.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Rainer Drewello
Building Preservation Sciences
Tel.: 0951/863-2402 (department office)
rainer.drewello@uni-bamberg.de

Weitere Informationen:

https://www.uni-bamberg.de/en/news/artikel/seeing-through-the-stones-of-cathedra...

Samira Rosenbaum | idw - Informationsdienst Wissenschaft

More articles from Architecture and Construction:

nachricht For a better climate in the cities: Start-up develops maintenance-free, evergreen moss façades
25.06.2019 | Technische Universität Kaiserslautern

nachricht 5G transmission masts made of wood for an attractive and sustainable cityscape
20.05.2019 | Technische Universität Kaiserslautern

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>