Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rock solid: Carbon-reinforced concrete from Augsburg

11.10.2016

Chemists at the University of Augsburg have discovered how to manufacture an extremely strong cement at reasonable cost through use of aligned short carbon fibres

Prof. Dr. Dirk Volkmer and fellow scientists from the Chair of Solid State and Materials Chemistry at the University of Augsburg have published a report in the Journal "Cement and Concrete Research", describing for the first time a simple and resource-efficient technique by which a specific alignment of short carbon fibres in cementitious construction materials can be achieved.


Mortar with parallel aligned short carbon fibres. Inside picture: Schematic sketch of the nozzle technique for the alignment of carbon fibres in construction materials.

© IfP/University of Augsburg


Measurement curves (three-point flexure) of normal concrete; mortar with aligned short carbon fibres, hard bone tissue, and beech wood demonstrate the comparatively low strength of normal concrete.

© IfP/University of Augsburg

The material produced with this process exhibits extraordinary strength, putting cement - which is actually a rather brittle material - into the same league as tough high‐performance structural biomaterials such as bone or shell. The material was developed in cooperation with the construction firm Schwenk KG, with the vision of being able to dispense with steel reinforcement in concrete construction components in the future.

Fibre-reinforced mortars and concretes are attracting ever more interest in the construction industry, as the fibre additives improve the low tensile strength of plain concrete without the need for conventional reinforcement. Carbon fibres in particular combine the advantages of low density and high resistance to corrosion with outstandingly high strength values. Up to now, however, their high manufacturing costs have meant they have not been introduced into concrete construction components on a wider scale.

More strength thanks to specific carbon fibre alignment

When it comes to casting of fibre-reinforced concrete in moulds or formwork, the fibres are always randomly oriented. However, because load-bearing structures in building construction are in most cases subjected to loading in one direction only, a haphazard orientation of the fibres means that a considerable proportion of their potential for strength enhancement goes to waste. As Prof. Dr. Dirk Volkmer points out, “If, instead, all the fibres can be aligned in parallel along the lines of force which affect the structural element, even fibre admixtures would produce a major effect – which will also help to save resources. This was our basic concept, because similar strategies occur in nature, such as in natural bones, where the structure is suitably reinforced by aligned collagen fibres at points which come under heavy stress."

Following on from this, Dr. Volkmer’s Augsburg research group have developed a concept which facilitates specific alignment of short carbon fibres in a mortar mixture. The team have now reported on their results in the highly respected construction industry journal "Cement and Concrete Research" (http://dx.doi.org/10.1016/j.cemconres.2016.08.011).

Nozzles instead of formwork and casting

The scientists adopted a new approach altogether, turning their backs on the traditional technique of casting the mortar mixture in formwork. Instead, they developed the “nozzle technique”, where the fibre-cement compound is squeezed through a narrow nozzle. The key feature here is that by adaptation of the cross section of the nozzle, a preferred orientation of the fibres can be imposed as they pass through, as can be seen in Figure 1. The short carbon fibres are oriented parallel to the direction of travel of the mortar compound as it emerges through the nozzle (see Fig. 1, inside picture).

Extremely tough and strong

“At first we simply worked on getting the most homogeneous possible distribution of the carbon fibres within the mortar mixture”, says Manuel Hambach, a Ph.D. student from Professor Volkmer’s group. “However, we rapidly discovered that homogeneous distribution alone could only achieve a limited increase in strength, because the fibres are oriented in all three spatial directions. It was only with our nozzle technique and the alignment of the fibres along the tensile force lines that we obtained a material which is extremely tough and extremely strong.”

Strength increased by 1340 %

The scientists have been able to prove that samples produced with this nozzle procedure containing 3% by volume of aligned short carbon fibres can achieve flexural strength values of up to 120 Megapascal (MPa). The Pascal is a unit for defining pressure or mechanical stress. By way of comparison, a concrete sample without fibres or steel reinforcement exhibits a flexural strength of only 8 MPa. This means that thanks to the specific fibre orientation, an increase in strength of 1340 % can be achieved, which gives the material extreme tensile strength, as Figure 2 shows.

Buildings without steel-reinforced concrete

The Augsburg researchers have also been able to show that the compressive strength, which is also a very important factor for mortar and concrete, is not adversely affected by the intentional and specific alignment of the carbon fibres. “Our mixture of cement, water, and aligned carbon fibres is the first cementitious construction material to have a flexural strength which is greater than its compressive strength. This is an important milestone in the development of building structures in which conventional steel reinforcement can be reduced, or even dispensed with altogether”, says Volkmer. "Our material exhibits high strength values which are similar to those found in the hard tissue of mammalian bones, which scientists all over the world have been trying for decades to emulate in biomimetic terms."

Implementation by 3D printing

In order for this new material to find a way to practical application, however, it will be essential to develop technical concepts for transfer of the nozzle technique to dimensions which approach the reality of structural building components. The current process is not yet compatible with the conventional processing methods used on construction sites, as Dr. Volkmer admits. But the Augsburg scientists have a potential solution ready to hand: they see 3D printing, which is becoming more and more significant in materials research and development, as a technique with huge potential for the future. "The first prototypes of houses constructed with the aid of 3D printers have been arousing public interest for some years now", says Volkmer. With this he is referring to the recently laid foundation stone for the new Augsburg research building, the "Materials Resource Management" (MRM) facility. This was produced by his team with a 3D printer using FIBRACRETE, the internal designation adopted for the Augsburg carbon-fibre mortar.

Multifunctional applications

As well as its high strength, another characteristic of FIBRACRETE is its huge potential for use in a wide range of different and multifunctional applications. As early as the beginning of 2016, Professor Volkmer and his group were able publish proof that it is possible to heat cement mortar containing short carbon fibres by means of electricity (see http://dx.doi.org/10.1016/j.compositesb.2016.01.043). As Volkmer points out, the new material is therefore ideally positioned to take its place within the range of high-tech solutions already available at Augsburg in the area of functional carbon materials (Carboterials®).

Publications:

• Hambach, M., Möller, H., Neumann, T., & Volkmer, D. (2016). Portland cement paste with aligned carbon fibers exhibiting exceptionally high flexural strength (> 100MPa). Cement and Concrete Research, 89, 80‐86. ‐ http://dx.doi.org/10.1016/j.cemconres.2016.08.011

• Hambach, M., Möller, H., Neumann, T., & Volkmer, D. (2016). Carbon fibre reinforced cement based composites as smart floor heating materials. Composites Part B: Engineering, 90, 465‐470. ‐
http://dx.doi.org/10.1016/j.compositesb.2016.01.043

Contact:

Prof. Dr. Dirk Volkmer
Faculty of Solid State and Materials Chemistry
Institute of Physics at the University Augsburg
D‐86135 Augsburg
Telephone: +49(0)821‐598‐3032
dirk.volkmer@physik.uni‐augsburg.de
http://www.physik.uni‐augsburg.de/chemie/

Weitere Informationen:

http://dx.doi.org/10.1016/j.cemconres.2016.08.011
http://dx.doi.org/10.1016/j.compositesb.2016.01.043

Klaus P. Prem | idw - Informationsdienst Wissenschaft

More articles from Architecture and Construction:

nachricht Construction Impact Guide
18.05.2018 | Hochschule RheinMain

nachricht New, forward-looking report outlines research path to sustainable cities
24.01.2018 | National Science Foundation

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>