Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rock solid: Carbon-reinforced concrete from Augsburg

11.10.2016

Chemists at the University of Augsburg have discovered how to manufacture an extremely strong cement at reasonable cost through use of aligned short carbon fibres

Prof. Dr. Dirk Volkmer and fellow scientists from the Chair of Solid State and Materials Chemistry at the University of Augsburg have published a report in the Journal "Cement and Concrete Research", describing for the first time a simple and resource-efficient technique by which a specific alignment of short carbon fibres in cementitious construction materials can be achieved.


Mortar with parallel aligned short carbon fibres. Inside picture: Schematic sketch of the nozzle technique for the alignment of carbon fibres in construction materials.

© IfP/University of Augsburg


Measurement curves (three-point flexure) of normal concrete; mortar with aligned short carbon fibres, hard bone tissue, and beech wood demonstrate the comparatively low strength of normal concrete.

© IfP/University of Augsburg

The material produced with this process exhibits extraordinary strength, putting cement - which is actually a rather brittle material - into the same league as tough high‐performance structural biomaterials such as bone or shell. The material was developed in cooperation with the construction firm Schwenk KG, with the vision of being able to dispense with steel reinforcement in concrete construction components in the future.

Fibre-reinforced mortars and concretes are attracting ever more interest in the construction industry, as the fibre additives improve the low tensile strength of plain concrete without the need for conventional reinforcement. Carbon fibres in particular combine the advantages of low density and high resistance to corrosion with outstandingly high strength values. Up to now, however, their high manufacturing costs have meant they have not been introduced into concrete construction components on a wider scale.

More strength thanks to specific carbon fibre alignment

When it comes to casting of fibre-reinforced concrete in moulds or formwork, the fibres are always randomly oriented. However, because load-bearing structures in building construction are in most cases subjected to loading in one direction only, a haphazard orientation of the fibres means that a considerable proportion of their potential for strength enhancement goes to waste. As Prof. Dr. Dirk Volkmer points out, “If, instead, all the fibres can be aligned in parallel along the lines of force which affect the structural element, even fibre admixtures would produce a major effect – which will also help to save resources. This was our basic concept, because similar strategies occur in nature, such as in natural bones, where the structure is suitably reinforced by aligned collagen fibres at points which come under heavy stress."

Following on from this, Dr. Volkmer’s Augsburg research group have developed a concept which facilitates specific alignment of short carbon fibres in a mortar mixture. The team have now reported on their results in the highly respected construction industry journal "Cement and Concrete Research" (http://dx.doi.org/10.1016/j.cemconres.2016.08.011).

Nozzles instead of formwork and casting

The scientists adopted a new approach altogether, turning their backs on the traditional technique of casting the mortar mixture in formwork. Instead, they developed the “nozzle technique”, where the fibre-cement compound is squeezed through a narrow nozzle. The key feature here is that by adaptation of the cross section of the nozzle, a preferred orientation of the fibres can be imposed as they pass through, as can be seen in Figure 1. The short carbon fibres are oriented parallel to the direction of travel of the mortar compound as it emerges through the nozzle (see Fig. 1, inside picture).

Extremely tough and strong

“At first we simply worked on getting the most homogeneous possible distribution of the carbon fibres within the mortar mixture”, says Manuel Hambach, a Ph.D. student from Professor Volkmer’s group. “However, we rapidly discovered that homogeneous distribution alone could only achieve a limited increase in strength, because the fibres are oriented in all three spatial directions. It was only with our nozzle technique and the alignment of the fibres along the tensile force lines that we obtained a material which is extremely tough and extremely strong.”

Strength increased by 1340 %

The scientists have been able to prove that samples produced with this nozzle procedure containing 3% by volume of aligned short carbon fibres can achieve flexural strength values of up to 120 Megapascal (MPa). The Pascal is a unit for defining pressure or mechanical stress. By way of comparison, a concrete sample without fibres or steel reinforcement exhibits a flexural strength of only 8 MPa. This means that thanks to the specific fibre orientation, an increase in strength of 1340 % can be achieved, which gives the material extreme tensile strength, as Figure 2 shows.

Buildings without steel-reinforced concrete

The Augsburg researchers have also been able to show that the compressive strength, which is also a very important factor for mortar and concrete, is not adversely affected by the intentional and specific alignment of the carbon fibres. “Our mixture of cement, water, and aligned carbon fibres is the first cementitious construction material to have a flexural strength which is greater than its compressive strength. This is an important milestone in the development of building structures in which conventional steel reinforcement can be reduced, or even dispensed with altogether”, says Volkmer. "Our material exhibits high strength values which are similar to those found in the hard tissue of mammalian bones, which scientists all over the world have been trying for decades to emulate in biomimetic terms."

Implementation by 3D printing

In order for this new material to find a way to practical application, however, it will be essential to develop technical concepts for transfer of the nozzle technique to dimensions which approach the reality of structural building components. The current process is not yet compatible with the conventional processing methods used on construction sites, as Dr. Volkmer admits. But the Augsburg scientists have a potential solution ready to hand: they see 3D printing, which is becoming more and more significant in materials research and development, as a technique with huge potential for the future. "The first prototypes of houses constructed with the aid of 3D printers have been arousing public interest for some years now", says Volkmer. With this he is referring to the recently laid foundation stone for the new Augsburg research building, the "Materials Resource Management" (MRM) facility. This was produced by his team with a 3D printer using FIBRACRETE, the internal designation adopted for the Augsburg carbon-fibre mortar.

Multifunctional applications

As well as its high strength, another characteristic of FIBRACRETE is its huge potential for use in a wide range of different and multifunctional applications. As early as the beginning of 2016, Professor Volkmer and his group were able publish proof that it is possible to heat cement mortar containing short carbon fibres by means of electricity (see http://dx.doi.org/10.1016/j.compositesb.2016.01.043). As Volkmer points out, the new material is therefore ideally positioned to take its place within the range of high-tech solutions already available at Augsburg in the area of functional carbon materials (Carboterials®).

Publications:

• Hambach, M., Möller, H., Neumann, T., & Volkmer, D. (2016). Portland cement paste with aligned carbon fibers exhibiting exceptionally high flexural strength (> 100MPa). Cement and Concrete Research, 89, 80‐86. ‐ http://dx.doi.org/10.1016/j.cemconres.2016.08.011

• Hambach, M., Möller, H., Neumann, T., & Volkmer, D. (2016). Carbon fibre reinforced cement based composites as smart floor heating materials. Composites Part B: Engineering, 90, 465‐470. ‐
http://dx.doi.org/10.1016/j.compositesb.2016.01.043

Contact:

Prof. Dr. Dirk Volkmer
Faculty of Solid State and Materials Chemistry
Institute of Physics at the University Augsburg
D‐86135 Augsburg
Telephone: +49(0)821‐598‐3032
dirk.volkmer@physik.uni‐augsburg.de
http://www.physik.uni‐augsburg.de/chemie/

Weitere Informationen:

http://dx.doi.org/10.1016/j.cemconres.2016.08.011
http://dx.doi.org/10.1016/j.compositesb.2016.01.043

Klaus P. Prem | idw - Informationsdienst Wissenschaft

More articles from Architecture and Construction:

nachricht When Concrete learns to pre-stress itself
15.07.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht TU Graz researchers want to fundamentally improve concrete diagnostics
29.06.2020 | Technische Universität Graz

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>