Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New reports urges more detailed utility metering to improve building efficiency

10.11.2011
A new interagency report recommends systematic consideration of new metering technologies, called submetering, that can yield up-to-date, finely grained snapshots of energy and water usage in commercial and residential buildings to guide efficiency improvements and capture the advantages of a modernized electric power grid.

Commercial and residential buildings consume vast amounts of energy, water, and material resources. In fact, U.S. buildings account for more than 40 percent of total U.S. energy consumption, including 72 percent of electricity use. If current trends continue, buildings worldwide will be the largest consumer of global energy by 2025. By 2050, buildings are likely to use as much energy as the transportation and industrial sectors combined.

Submetering is the use of metering devices to measure actual energy or water consumption at points downstream from the primary utility meter on a campus or building. Submetering allows building owners to monitor energy or water usage for individual tenants, departments, pieces of equipment or other loads to account for their specific usage. Submetering technologies enable building owners to optimize design and retrofit strategies to energy and water management procedures more efficient and effective.

While the return on investment (ROI) for submeters depends on specific energy-efficiency strategies that may vary by climate, building type, and other factors, "numerous case studies provide evidence that the ROI can be significant," concludes the report,Submetering of Building Energy and Water Usage: Analysis and Recommendations of the Subcommittee on Buildings Technology Research and Development. Installing submetering technology also makes possible the use of more advanced conservation technologies in the future, the report notes.

The report is a product of the Buildings Technology Research and Development Subcommittee of the National Science and Technology Council (NSTC), a cabinet-level council that is the principal means within the executive branch to coordinate science and technology policy across the diverse entities that make up the federal research and development enterprise.

The NSTC report provides an overview of the key elements of submetering and associated energy management systems to foster understanding of associated benefits and complexities. It documents the current state of submetering and provides relevant case studies and preliminary findings relating to submetering system costs and ROI. The report also addresses gaps, challenges and barriers to widespread acceptance along with descriptive candidate areas where additional development or progress is required. It also surveys policy options for changing current buildings-sector practices.

The 74-page report can be downloaded from: www.bfrl.nist.gov/buildingtechnology/documents/

SubmeteringEnergyWaterUsageOct2011.pdf

For more details, see the Nov. 8, 2011 announcement, "Government Issues Building Energy and Water Submetering Report" at www.nist.gov/el/submetering.cfm

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov

More articles from Architecture and Construction:

nachricht Switch2save: smart windows and glass façades for highly efficient energy management
15.10.2019 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Switch2Save: smart windows and glass façades for highly efficient energy management using novel switching technologies
04.10.2019 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

New material captures carbon dioxide

15.10.2019 | Materials Sciences

Drugs for better long-term treatment of poorly controlled asthma discovered

15.10.2019 | Interdisciplinary Research

Family of crop viruses revealed at high resolution for the first time

15.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>