A UGR researcher proposes a formula to measure the seismic resistance of reinforced concrete buildings

Recently, it has been suggested a new formula, confirmed with numerical simulations, which is going to make the prediction of the seismic resistance of reinforced concrete structures easier, based on its capacity to take up and disperse energy.

The director of this work, which has been recently published in the international journal Engineering Structures, is Professor Amadeo Benavent Climent, of the Department of Continuous Means and Theory of Structures of the University of Granada [http://www.ugr.es]. They intend to predict “in case of earthquake, the maximum amount of seismic energy this kind of structures could take up and disperse without risk of collapse”, Benavent Climent explains.

The higher this energy is, the higher the building´s resistance capacity will be. Such energy depends fundamentally on ductility, this is, on the ability of the structure to become twisted without breaking. The new formula allows to assess the seismoresistance of the structures and, comparing it with the seismicity of the area where the construction is located, to draw conclusions about if reconditioning them is necessary or not, whether by means of conventional techniques or by advanced methods like that of energy dispersers. This technique consists of installing special elements in the structure that avoid that pillars and beams suffer important damage in case of earthquake. The next extension of the Architects´ Association of Granada will be the first Spanish building with these special energy dispersers.

One of the present goals for seismic engineering is to control damage (reducing or removing it) in structures subjected to earthquakes. According to current rules of most countries, like Spain, conventional buildings are deigned to, in case of earthquake, experience important plastic deformations but without collapsing, to avoid the loss of human lives. However, allowing such plastic deformations means to admit structurale damages, which can make the demolition of the building after the earthquake advisable.

Media Contact

Antonio Marín Ruiz alfa

More Information:

http://www.ugr.es

All latest news from the category: Architecture and Construction

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors