Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proposed engineering method could help make buildings and bridges safer

22.01.2019

Researchers at Kanazawa University discover how to make pearlite stretch or contract more by changing the distance between irregularities in atomic arrangements along its nanolayer boundaries

Pearlitic steel, or pearlite, is one of the strongest materials in the world and can be made into thin and long wires. The strength of pearlite allows it to sustain very heavy weight, however what makes it special is its ability to stretch and contract without breaking (ductility).


Interfacial-dislocation-controlled deformation and fracture in nanolayered composites. The spacing of the interfacial dislocations, which accommodate misfit strain between the ferrite and cementite phases, determines the phase stress and the interfacial dislocation network in the nanolayered-pearlite models. Various modes of initially activated inelastic-deformation are observed according to interfacial dislocation spacing because the phase stress and the interfacial dislocation network influence the resolved shear/normal stress and the critical resolved shear/normal stress for each inelastic-deformation mode, respectively. Hence, interfacial dislocation spacings can be a key parameter that controls the ductility of drawn pearlitic steels and leads us toward higher ductility of drawn pearlitic steels.

Credit: Kanazawa University

Usage Restrictions: The image may only be used with appropriate caption and credit.

Ductility is important for building bridges, as even if a material is strong enough to support heavy weight, it can break when subjected to stretching if it is not ductile enough.

This is why structures made of concrete can still collapse during violent earthquakes. Pearlite is used for suspension bridges to help them withstand strong shaking while supporting heavy weight.

Pearlite is made of alternating nanolayers of cementite and ferrite. The cementite helps make it strong, while the ferrite helps make it ductile. However, until now researchers did not know exactly how the two worked together to give pearlite its special quality, or better yet, how to control their working together to engineer an even better material.

Researchers at Kanazawa University have discovered that disruptions, or dislocations, in the arrangement of atoms along the interface between a cementite and a ferrite layer protect the cementite from fracturing under stretching or compression. Their study was published last month in the journal Acta Materialia.

"The spacing between dislocations on a cementite-ferrite interface determines how deformation travels through the nanolayers", the authors say. "Manipulating the dislocation structure and the distance between dislocations can control the ductility of pearlite."

The researchers used computer simulations to see how a pearlite wire would deform with dislocations of different orientations and different distances between them along the ferrite-cementite interface. They found that particular dislocation structures and distances could stop cracks from forming or spreading throughout the cementite layer.

"Increasing the ductility of pearlite means it can resist more shearing stress without breaking or tearing," say the authors. This may lead to a new generation of materials for constructing buildings and bridges that can withstand stronger earthquakes.

The researchers believe manipulating dislocations consisting of entire clusters of atoms could be a general technique for enhancing not only ductility but other properties of materials to meet particular engineering and construction needs.

Tomoya Sato | EurekAlert!
Further information:
https://www.sciencedirect.com/science/article/pii/S1359645418308711?via%3Dihub
http://dx.doi.org/10.1016/j.actamat.2018.10.061

Further reports about: computer simulations earthquakes generation of materials

More articles from Architecture and Construction:

nachricht Living bridges: How traditional Indian building techniques can make modern cities more climate-friendly
18.11.2019 | Technische Universität München

nachricht Corrosion - Slow Decay
22.10.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Scientists first to develop rapid cell division in marine sponges

21.11.2019 | Life Sciences

First detection of gamma-ray burst afterglow in very-high-energy gamma light

21.11.2019 | Physics and Astronomy

Research team discovers three supermassive black holes at the core of one galaxy

21.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>