Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

memory-steel - a new material for the strengthening of buildings

23.10.2018

A new building material developed at Empa is about to be launched on the market: "memory-steel" can not only be used to reinforce new, but also existing concrete structures. When the material is heated (one-time), prestressing occurs automatically. The Empa spin-off re-fer AG is now presenting the material with shape memory in a series of lectures.

So far, the steel reinforcements in concrete structures are mostly prestressed hydraulically. This re-quires ducts for guiding the tension cables, anchors for force transfer and oil-filled hydraulic jacks. The space requirements of all these apparatuses created the geometric framework conditions for every prestressed concrete structure; the strengthening of older structures therefore sometimes fails due to the high space requirements of this proven method.


Reinforcement of an intermediate slab with memory-steel.

Empa


memory-steel reinforcement bars.

Empa

In around 15 years of research work, experts from Empa and re-fer AG have now brought an alter-native method to series production readiness: shape memory alloys based on iron, which contract during heating and thus permanently prestress the concrete structure.

Hydraulic prestressing can thus be avoided - it is sufficient to heat the steel shortly, for example by means of electric current or infrared radiators. The new building material will be marketed immediately under the name "memory-steel". Several pilot projects, such as the reinforcement of various reinforced concrete slabs, have already been successful.

Development of memory-steel

The development of memory-steel began in the early 2000s. In the previous decades, Empa had al-ready pioneered the strengthening of concrete with carbon fibre reinforced polymers (CFRP). This led to the idea of using shape memory alloys for prestressing concrete.

Initial tests with nickel-titanium alloys were positive. However, the material known from medicine is far too expensive for use in the construction sector. In 2009, Empa researchers succeeded in developing an iron-based shape memory alloy, which they also patented. In 2012, researchers around Julien Michels finally founded the company re-fer AG; Michels has been CEO of the young company ever since.

New opportunities for old buildings

memory-steel should first of all be used for the strengthening of existing buildings. As soon as, for example, new windows, doors or lift shafts are installed in the concrete structure of an old building, a new reinforcement of the load-bearing structure is often unavoidable. In industrial buildings, the load-bearing capacity of an old suspended slab sometimes has to be increased.

Thanks to memory-steel, such tasks can now also be easily solved in confined spaces: Either a strip of special steel is fastened under the ceiling using dowels and then heated with electricity or an infrared radiator.

Alternatively, the reinforcement can also be set in concrete: First a groove is milled into the surface of the concrete slab, then a ribbed reinforcement bar made of memory-steel is inserted in-to the groove and filled with special mortar. Finally, the profile is heated with the aid of direct cur-rent and thus prestressed. Another variant is to embed the reinforcement bar in an additional shotcrete layer.

Precast concrete elements with special geometry

In the future, memory-steel could also be a proven method for manufacturing precast concrete parts with a previously unknown geometry. The hydraulic prestressing used up to now creates fric-tion in curved structures, which greatly limits the use of this method.

With a memory-steel profile embedded in concrete, highly curved constructions are now also possible: when heated, the profile contracts uniformly over its entire length without friction losses and transfers the stress to the concrete.

Market launch of memory-steel

The ready-to-install memory-steel profiles are manufactured by Voestalpine Böhler Edelstahl GmbH & Co KG in Austria. The company is also working with re-fer and Empa to further develop the composition of the alloy.
The new building material memory-steel will be presented to interested building experts and archi-tects during four technical seminars. Contact persons include experts from re-fer, Empa researchers, concrete experts from Sika AG and concrete profile manufacturer Stahlton AG.

Dates of the symposia
30 October 2018 Empa, Dübendorf - 13.15 h to 16.45 h
31 October 2018 Empa, St.Gallen - 13.15 h to 16.45 h
5 November 2018 FH Luzern - 13.15 h to 16.45 h
7 November 2018 Kursaal Bern - 13.15 h to 16.45 h

Wissenschaftliche Ansprechpartner:

Dr. Christoph Czaderski
Empa, Structural Engineering
Tel.: +41 58 765 4216
Christoph.Czaderski@empa.ch

Dr. Julien Michels
re-fer AG
Tel.: +41 58 765 4339
jmichels@re-fer.eu

Rainer Fluch
voestalpine BÖHLER Edelstahl GmbH & Co KG
Tel.: +43 3862 203 60 62
rainer.fluch@bohler-edelstahl.at

Originalpublikation:

J Michels, M Shahverdi, C Czaderski; Flexural strengthening of structural concrete with iron-based shape memory alloy strips; Structural Concrete (2018); DOI: 10.1002/suco.201700120
https://onlinelibrary.wiley.com/doi/full/10.1002/suco.201700120

Weitere Informationen:

https://www.empa.ch/web/s604/memory-steel

Rainer Klose | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

More articles from Architecture and Construction:

nachricht For a better climate in the cities: Start-up develops maintenance-free, evergreen moss façades
25.06.2019 | Technische Universität Kaiserslautern

nachricht 5G transmission masts made of wood for an attractive and sustainable cityscape
20.05.2019 | Technische Universität Kaiserslautern

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Toward molecular computers: First measurement of single-molecule heat transfer

22.07.2019 | Information Technology

First impressions go a long way in the immune system

22.07.2019 | Health and Medicine

New Record: PLQE of 70.3% in lead-free halide double perovskites

22.07.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>