Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

memory-steel - a new material for the strengthening of buildings

23.10.2018

A new building material developed at Empa is about to be launched on the market: "memory-steel" can not only be used to reinforce new, but also existing concrete structures. When the material is heated (one-time), prestressing occurs automatically. The Empa spin-off re-fer AG is now presenting the material with shape memory in a series of lectures.

So far, the steel reinforcements in concrete structures are mostly prestressed hydraulically. This re-quires ducts for guiding the tension cables, anchors for force transfer and oil-filled hydraulic jacks. The space requirements of all these apparatuses created the geometric framework conditions for every prestressed concrete structure; the strengthening of older structures therefore sometimes fails due to the high space requirements of this proven method.


Reinforcement of an intermediate slab with memory-steel.

Empa


memory-steel reinforcement bars.

Empa

In around 15 years of research work, experts from Empa and re-fer AG have now brought an alter-native method to series production readiness: shape memory alloys based on iron, which contract during heating and thus permanently prestress the concrete structure.

Hydraulic prestressing can thus be avoided - it is sufficient to heat the steel shortly, for example by means of electric current or infrared radiators. The new building material will be marketed immediately under the name "memory-steel". Several pilot projects, such as the reinforcement of various reinforced concrete slabs, have already been successful.

Development of memory-steel

The development of memory-steel began in the early 2000s. In the previous decades, Empa had al-ready pioneered the strengthening of concrete with carbon fibre reinforced polymers (CFRP). This led to the idea of using shape memory alloys for prestressing concrete.

Initial tests with nickel-titanium alloys were positive. However, the material known from medicine is far too expensive for use in the construction sector. In 2009, Empa researchers succeeded in developing an iron-based shape memory alloy, which they also patented. In 2012, researchers around Julien Michels finally founded the company re-fer AG; Michels has been CEO of the young company ever since.

New opportunities for old buildings

memory-steel should first of all be used for the strengthening of existing buildings. As soon as, for example, new windows, doors or lift shafts are installed in the concrete structure of an old building, a new reinforcement of the load-bearing structure is often unavoidable. In industrial buildings, the load-bearing capacity of an old suspended slab sometimes has to be increased.

Thanks to memory-steel, such tasks can now also be easily solved in confined spaces: Either a strip of special steel is fastened under the ceiling using dowels and then heated with electricity or an infrared radiator.

Alternatively, the reinforcement can also be set in concrete: First a groove is milled into the surface of the concrete slab, then a ribbed reinforcement bar made of memory-steel is inserted in-to the groove and filled with special mortar. Finally, the profile is heated with the aid of direct cur-rent and thus prestressed. Another variant is to embed the reinforcement bar in an additional shotcrete layer.

Precast concrete elements with special geometry

In the future, memory-steel could also be a proven method for manufacturing precast concrete parts with a previously unknown geometry. The hydraulic prestressing used up to now creates fric-tion in curved structures, which greatly limits the use of this method.

With a memory-steel profile embedded in concrete, highly curved constructions are now also possible: when heated, the profile contracts uniformly over its entire length without friction losses and transfers the stress to the concrete.

Market launch of memory-steel

The ready-to-install memory-steel profiles are manufactured by Voestalpine Böhler Edelstahl GmbH & Co KG in Austria. The company is also working with re-fer and Empa to further develop the composition of the alloy.
The new building material memory-steel will be presented to interested building experts and archi-tects during four technical seminars. Contact persons include experts from re-fer, Empa researchers, concrete experts from Sika AG and concrete profile manufacturer Stahlton AG.

Dates of the symposia
30 October 2018 Empa, Dübendorf - 13.15 h to 16.45 h
31 October 2018 Empa, St.Gallen - 13.15 h to 16.45 h
5 November 2018 FH Luzern - 13.15 h to 16.45 h
7 November 2018 Kursaal Bern - 13.15 h to 16.45 h

Wissenschaftliche Ansprechpartner:

Dr. Christoph Czaderski
Empa, Structural Engineering
Tel.: +41 58 765 4216
Christoph.Czaderski@empa.ch

Dr. Julien Michels
re-fer AG
Tel.: +41 58 765 4339
jmichels@re-fer.eu

Rainer Fluch
voestalpine BÖHLER Edelstahl GmbH & Co KG
Tel.: +43 3862 203 60 62
rainer.fluch@bohler-edelstahl.at

Originalpublikation:

J Michels, M Shahverdi, C Czaderski; Flexural strengthening of structural concrete with iron-based shape memory alloy strips; Structural Concrete (2018); DOI: 10.1002/suco.201700120
https://onlinelibrary.wiley.com/doi/full/10.1002/suco.201700120

Weitere Informationen:

https://www.empa.ch/web/s604/memory-steel

Rainer Klose | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

More articles from Architecture and Construction:

nachricht Proposed engineering method could help make buildings and bridges safer
22.01.2019 | Kanazawa University

nachricht Preserving soil quality in the long term
17.12.2018 | Schweizerischer Nationalfonds SNF

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bifacial Stem Cells Produce Wood and Bast

Heidelberg researchers study one of the most important growth processes on Earth

So-called bifacial stem cells are responsible for one of the most critical growth processes on Earth – the formation of wood.

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A New Home for Optical Solitons

23.01.2019 | Physics and Astronomy

Graphene and related materials safety: human health and the environment

23.01.2019 | Materials Sciences

Blood test shows promise for early detection of severe lung-transplant rejection

23.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>