Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leaky water pipes problem solved by Sheffield engineers

06.08.2012
Leaky pipes are a common problem for the water industry: according to UK regulator, Ofwat, between 20 and 40 per cent of the UK's total water supply can be lost through damaged pipes. Developing more accurate ways of finding leaks would enable water companies to save revenue and reduce their environmental impact.

The system invented at Sheffield tests pipes by transmitting a pressure wave along them that sends back a signal if it passes any unexpected features, such as a leak or a crack in the pipe's surface.

The pressure wave is generated by a valve fitted to an ordinary water hydrant, which is opened and closed rapidly. The wave sends back a reflection, or a signal, if it encounters any anomalous features in the pipe. The strength of that signal can then be analysed to determine the location and the size of the leak.

Originally created by a team led by Professor Stephen Beck in the University's Department of Mechanical Engineering, the invention was developed into a prototype device in partnership with colleagues in the Department of Civil and Structural Engineering, and UK water company, Yorkshire Water.

The device has now been trialled at Yorkshire Water's field operators training site in Bradford, UK and results show that it offers a reliable and accurate method of leak testing. Leaks in cast iron pipes were located accurately to within one metre, while leaks in plastic pipes were located even more precisely, to within 20cm. The results of the trial are published today (6 August 2012) in a paper entitled, 'On site leak location in a pipe network by cepstrum analysis of pressure transients', in the Journal - American Water Works Association.

Existing leak detection techniques rely on acoustic sensing with microphones commonly used to identify noise generated by pressurised water escaping from the pipe. This method, however, is time consuming and prone to errors: the use of plastic pipes, for example, means that the sound can fall away quickly, making detection very difficult.

In contrast the device invented by the Sheffield team uses a series of calculations based on the size of the pipe, the speed of the pressure wave, and the distance it has to travel. The device can be calibrated to get the most accurate results and all the data is analysed on site, delivering immediate results that can be prioritised for action.

Dr James Shucksmith, in the Department of Civil and Structural Engineering at the University of Sheffield, who led the trial, says: "We are very excited by the results we've achieved so far: we are able to identify the location of leaks much more accurately and rapidly than existing systems are able to, meaning water companies will be able to save both time and money in carrying out repairs.

"The system has delivered some very promising results at Yorkshire Water. We hope now to find an industrial partner to develop the device to the point where it can be manufactured commercially"

Dr Allyson Seth, Networks Analytics Manager at Yorkshire Water comments: "Driving down leakage on our 31,000km network of water pipes is a high priority for us.

"Over the last 12 months alone, we've targeted leakage reduction and as a result we're currently recording our lowest ever levels of leakage.

"But we want to do more, which is why, in addition to the existing technologies we use, we're looking at new ways to help us to reduce leakage.

"Our work with engineers at the University of Sheffield is the latest example of this, and we look forward to working with them going forward to build on what has been achieved so far."

Jo Kelly | EurekAlert!
Further information:
http://www.shef.ac.uk/

More articles from Architecture and Construction:

nachricht City research draws on Formula 1 technology for the construction of skyscrapers
10.12.2019 | City University London

nachricht Living bridges: How traditional Indian building techniques can make modern cities more climate-friendly
18.11.2019 | Technische Universität München

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>