Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State Engineers Developing Pavement Technologies to Clear Snow and Ice From Runways

04.03.2015

Alireza Sassani turned a switch and sent 60 volts of electricity into a small block of concrete. A few minutes later the Iowa State University doctoral student took some measurements and found the block’s surface temperature had risen from 64 degrees Fahrenheit to 189 degrees.

Next, Therin Young stepped up to the demonstration table and carefully squeezed drops of green-colored water on top of another set of small concrete blocks. The drops beaded on the concrete and, with the help of a little tilting by the master’s student, rolled right off the edge.


Photo by Christopher Gannon/Iowa State University.

Iowa State's Halil Ceylan checks a test slab that uses heated pavement technology to melt snow and ice. One of the goals of the research project is to help smaller airports clear runways during winter storms.

And then Halil Ceylan opened a walk-in freezer and showed off a pile of snow from one of Iowa’s winter storms. Behind the snow was a 2½-foot by 3½-foot concrete slab that was wet, but drying. Some 45 minutes earlier, that slab was buried in the snow.

All three technologies – electrically conductive concrete, nanostructured superhydrophobic coatings and hydronic heated pavements – are designed to quickly, economically and sustainably clear snow and ice from airport runways.

“These new technologies could prevent flight delays and keep airports accessible,” said Ceylan, an Iowa State associate professor of civil, construction and environmental engineering and director of the Program for Sustainable Pavement Engineering and Research at Iowa State’s Institute for Transportation.

“This provides a safe working platform for airport personnel and passengers,” he said. “And it’s environmentally friendly – airports don’t have to use tons of de-icing salts. This also translates into reduced emissions and costs because airports don’t have to treat the wastewater associated with de-icing of airport pavements, which is otherwise mandatory.”

The pavement research is part of the Federal Aviation Administration’s Center of Excellence Partnership to Enhance General Aviation Safety, Accessibility and Sustainability, or PEGASAS. The partnership was established in 2012 and is led by researchers at Purdue University. Other core members of the partnership are Iowa State, The Ohio State University, Georgia Institute of Technology, Florida Institute of Technology and Texas A&M University.

The FAA’s centers of excellence establish cost-sharing research partnerships with the federal government, universities and industry. PEGASAS researchers are studying a variety of general aviation issues including airport technology, flight safety and adverse weather operations.

The program is providing about $750,000 for Iowa State’s studies of snow- and ice-free runway pavements. The university is matching those funds.

Ceylan has assembled a team of 19 faculty, staff and students to develop the pavement technologies and analyze their costs and benefits. He said Iowa State, as home of the National Concrete Pavement Technology Center, is the perfect place to research and develop new ways to keep runways clear of snow and ice.

And so back in the Town Engineering Building’s pavements lab:

● Researchers have been adding various mixes of electrically conductive carbon fibers and powders into pavement materials. Put an electrical charge through the resulting pavements and they’re quickly hot enough to melt snow and ice.

The researchers are looking for just the right mix of pavement conductivity, workability, durability, economics and safety.

● Researchers have been spraying various nanomaterials (including PTFE, DuPont’s Teflon®) onto pavement test samples. The idea is to produce pavements that repel water. That would prevent snow and ice from sticking and make it easier for plows to clean up after a storm.

“This would be like a lotus leaf,” Ceylan said. “The water doesn’t stick to the surface.”

● Researchers have been pouring concrete around copper pipes to create test slabs for hydronic systems. The systems circulate heated liquid through the pipes, warming the pavement and melting any snow and ice from the surface.

Ceylan said one of the biggest challenges with the heated pavement technology is developing the advanced construction techniques to build large, reliable and economical systems.

So far, Ceylan said studies of all three technologies are moving ahead, showing promise and looking feasible. But larger-scale, outdoor tests are still needed. He’s hoping to install outdoor test panels – perhaps on campus – within the next year or so.

And while several major airports have expressed interest in testing the snow- and ice-clearing technologies, Ceylan said the real target is small, general aviation airports.

“General aviation airports don’t have the personnel and the equipment that the big airports have,” he said. “And so sometimes in the winter they just shut down. General aviation airports aren’t just concerned about cutting snow-removal costs, it’s a matter of keeping the airports open.”

Contact Information
Halil Ceylan, Civil, Construction and Environmental Engineering, 515-294-8051, hceylan@iastate.edu

Halil Ceylan | newswise
Further information:
http://www.iastate.edu

More articles from Architecture and Construction:

nachricht Construction Impact Guide
18.05.2018 | Hochschule RheinMain

nachricht New, forward-looking report outlines research path to sustainable cities
24.01.2018 | National Science Foundation

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>