“Nothing” insulates better

What works for thermos flasks can also be used for thermally insulating buildings: insulation by means of a vacuum. Vacuum insulation panels and vacuum glazing improve the thermal insulation not through having more material but by reducing the thermal conductivity.

This means that even a very thin structure achieves excellent performances. The new BINE-Themeninfo brochure “Insulation through vacuums” (I/2011) explains the basic principles behind the new thermal insulation technology, its potential applications and also its special features.

Vacuum insulation panels (VIPs) consist of compressed silica powder, an extremely porous material that is encapsulated in a gas-tight enclosure made of special high-barrier films. The clever aspect here is that the evacuation almost completely eliminates gaseous thermal conduction within the panels. The fragile thermal insulation elements are more akin to prefabricated building elements than conventional thermal insulation that can be tailored as required. That therefore requires a new approach to the planning and handling. In specific cases this extra effort is nevertheless worthwhile – thanks to the improved thermal insulation that is five to ten times better than conventional materials. This provides a considerable advantage when there are space constraints or high thermal insulation requirements. In 2008, the first VIP products were granted building regulations approval in Germany.

Vacuum glazing has proved itself on a laboratory scale and a demonstration system for testing individual production stages is now in operation. The free BINE-Themeninfo brochure “Insulation through vacuums” (I/2011) is available from the BINE information service at FIZ Karlsruhe by downloading it online at www.bine.info or by calling +49-228 92379-0.

Press contact

Uwe Milles
presse(at)bine.info
About BINE Information Service
Energy research for practical applications
The BINE Information Service reports on energy research topics, such as new materials, systems and components, as well as innovative concepts and methods. The knowledge gained is incorporated into the implementation of new technologies in practice, because first-rate information provides a basis for pioneering decisions, whether in the planning of energy-optimised buildings, increasing the efficiency of industrial processes, or integrating renewable energy sources into existing systems.

About FIZ Karlsruhe

FIZ Karlsruhe – Leibniz Institute for Information Infrastructure is a not-for-profit organization with the public mission to make sci-tech information from all over the world publicly available and to provide related services in order to support the national and international transfer of knowledge and the promotion of innovation.
Our business areas:
• STN International – the world’s leading online service for research and patent information in science and technology
• KnowEsis – innovative eScience solutions to support the process of research in all its stages, and throughout all scientific disciplines
• Databases and Information Services – Databases and science portals in mathematics, computer science, crystallography, chemistry, and energy technology

FIZ Karlsruhe is a member of the Leibniz Association (WGL) which consists of 87 German research and infrastructure institutions.

Media Contact

Rüdiger Mack idw

More Information:

http://www.bine.info/en

All latest news from the category: Architecture and Construction

Back to home

Comments (0)

Write a comment

Newest articles

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Memory Self-Test via Smartphone

… Can Identify Early Signs of Alzheimer’s disease. Dedicated memory tests on smartphones enable the detection of “mild cognitive impairment”, a condition that may indicate Alzheimer’s disease, with high accuracy….

The Sound of the Perfect Coating

Fraunhofer IWS Transfers Laser-based Sound Analysis of Surfaces into Industrial Practice with “LAwave”. Sound waves can reveal surface properties. Parameters such as surface or coating quality of components can be…

Partners & Sponsors