Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative Photovoltaics – from the Lab to the Façade

25.11.2015

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were developed and produced by the Institute and demonstrate the interplay of different technologies.


The Fraunhofer Institute for Solar Energy Systems ISE has integrated 70 PV modules of its own development and production into the building façade of one of its laboratories.

©Fraunhofer ISE

Together with industry, Fraunhofer ISE developed a crystalline PV module called “TPedge” using a process that saves both time and money and replaces the lamination step. Innovative back-contacted solar cells from the Institute’s own production are integrated into the module.

When the energy-efficient lab building was inaugurated in 2013, a few of the PV modules were installed on the façade for test purposes. Now the solar façade is complete and all 70 modules are in operation.

Solar Cells

The crystalline PV modules are based on an innovative solar cell technology using back contacts. This so-called “High Performance Metal Wrap Through” (HIP-MWT) concept was developed and patented by Fraunhofer ISE. The solar cells were developed in a near-industry process and produced in small-scale production at the Photovoltaic Technology Evaluation Center (PV-TEC) of Fraunhofer ISE.

“By using our fully automated production facilities, e. g. an innovative laser system for creating vias in silicon wafers, we were able to demonstrate industrial cycle times,” says Dr. Florian Clement, Group Head of MWT Solar Cells and Printing Technology. HIP-MWT solar cells with rear side passivation reach efficiencies of up to 20.5 percent.
Module

The solar cells are interconnected with a patented cell connector made of copper. This structured metal foil reduces the electrical stringing losses down to about 1 percent and minimizes the mechanical stress on the cells. “In the Module-TEC facility of Fraunhofer ISE, the solar cells are interconnected with a special back-contact stringer unit, developed jointly with the Somont company,” explains Dr. Harry Wirth, Division Director of Photovoltaic Modules, Systems and Reliability at Fraunhofer ISE.

Another innovative feature is the module encapsulation. The solar cells are not laminated in the conventional way, but rather fixed at points in a glass-glass module. The edges of the TPedge module are sealed with a thermoplastic material, making an aluminum frame unnecessary. This new type of module construction is also a Fraunhofer ISE invention, developed together with Bystronic glass and protected by patent.

Cooperation

In all, over 100 TPedge modules were manufactured using automated solutions developed by Fraunhofer ISE. A repres-entative sample of the modules was selected for tests and successfully passed sequences based on the IEC standard 61215. Both external and internal partners contributed to the success of this project.

“As mechanical engineers for architectural glass, we could demonstrate that a modified TPS® production line could also be used to manufacture TPedge for façade applications,” explains Tobias Neff, product manager at Bystronic glass, an industry partner of Fraunhofer ISE. “In our facility, a thin TPS® spacer was applied to the rear glass pane with the mounted solar cells. The glass panes were subsequently mounted together in an automated process and sealed with silicone.”

Façade Integration and Yield Analysis

Because of the close cooperation with the architects from an early stage on, a successful architectural integration of the PV modules and the neighboring fiber-cement plates could be achieved through a shared substructure on the façade. Since October, the PV façade provides electricity to consumers in the building.

To analyze operation, a team from Fraunhofer ISE is continuously monitoring the electric and meteorological parameters on site. The monitoring data shall also assist the scientists at Fraunhofer ISE to further improve their methods of yield analysis, especially for building-integrated facade systems experiencing partial shading.

Support

These developments were supported by the German Federal Ministry for Economic Affairs and Energy (BMWi) in different projects.

Weitere Informationen:

http://www.ise.fraunhofer.de

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Architecture and Construction:

nachricht Preserving soil quality in the long term
17.12.2018 | Schweizerischer Nationalfonds SNF

nachricht New Generation of Cleaning Tools for CSP Plants Reduces the Water Consumption
09.11.2018 | Steinbeis-Europa-Zentrum

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>