Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

INM working with Namibia to develop sustainable building materials from natural resources

13.03.2014

Researchers from the Saarland and Africa will be developing adhesives obtained from natural resources and using them to produce sustainable building materials.

The INM – Leibniz Institute for New Materials is starting out on a joint pilot project with Namibia. Researchers from the Saarland and Africa will be developing adhesives obtained from natural resources and using them to produce sustainable building materials. The NaMiBIND project is scheduled to run for two years and the Federal Ministry of Education and Research (BMBF) is providing sponsorship to the tune of around 250,000 euros.

Namibia has acacias and sand in abundance. Acacia mellifera and Dichrostachys cinerea in particular change the biodiversity of plants and animals by bush encroachment, and in doing so pose a threat to entire ecosystems. In order to halt their growth, the shrubs have up to now simply been cut down and used as fuel.

The INM, in partnership with the UNAM University and Polytechnic of Namibia along with the Namibian Business & Innovation Centre (NBIC), is keen to find a way to use the proliferous bushes in the form of ecologically certified basic wood materials as sustainable building materials. Their aim in this is to use sand from Namibia’s desert and the natural ingredients in acacias as components of an adhesive that they can combine with the acacia wood to produce simple construction panels similar to chipboard.

The sale of these materials in Africa and exports will at the same time provide a boost for economic prosperity in Africa, and means that sand and scrub will remain in a cycle that is both sustainable and environmentally friendly, beneficial to the economy and socially acceptable, according to Rainer Hanselmann, Head of Sales at the INM.

“Typical binders used today for wood chipboards are composed of industrial polymers and resins, some of which are highly flammable”, explains Ingrid Weiss, Head of the Biomineralization Program Division. In her opinion, “the development of alternative binders made from inorganic precursors based on INM technology will pave the way for manufacturing materials that are highly heat-resistant, water-repellent and antimicrobicidal. But for economic purposes this technology is far too expensive”.

“As the basis of our new "Namib" binder, we will be using sand directly from the desert and first of all turn it into glass using simple, proven processes with potassium carbonate”, says the biologist. “This glass is then powdered and converted to a “water glass suspension”. Other components, such as certain hydrocarbons, would be provided by the acacias themselves. And this is the point where the new development in the sustainable process kicks in.

There are a number of varieties of acacia bushes in Namibia, including Acacia mellifera, Acacia reficiens, Dichrostachys cinerea, Colophospermum mopane, Terminalia sericea and Rhigozum trichotomum. “In order to be able to use these as building materials and binders, we need to analyse them systematically and first of all establish which components, for example rubber, phenolic resins or lignin, they contain and how – carefully extracted and combined – they could be suitable for flame-resistant and durable building materials”, explains expert Ingrid Weiss.

“Plants contain a wide variety of species-specific natural substances, the use of which has not up to now been explored. Working closely with our African colleagues and junior scientists, we can provide input by tapping into the variety and complexity of these natural substances. Because only then can locally unique and ecologically significant value chains be generated in the long term.”

Until now, physical and chemical data on a project such as this has not been available. “We regard NaMiBIND as a pilot study which, if successful, can be translated to other regions and other types of wood”, sums up the expert on biomineralization. Ultimately, natural building materials are a key element in sustainability across the globe for keeping raw materials in an ecological economic cycle. 

Background:

“Natural and Mineral-based Binders for the ecological building material Industry” (NaMiBIND) has been nominated by the BMBF as part of the “Partnerships for sustainable solutions with Sub-Saharan Africa” promotion as one of the first projects of its type with outstanding recovery potential. It is scheduled to run for two years, with funding of 250,000 euros. NaMiBIND is a cooperative venture involving the Biomineralization Program Division of the INM – Leibniz Institute for New Materials and the UNAM University and Polytechnic of Namibia, along with the Namibian Business & Innovation Centre (NBIC). 

Expert:
Dr. Ingrid Weiss
INM – Leibniz Institute for New Materials
Head of Biomineralization
Phone: +490681-9300-318

INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for medical surfaces, new surface materials for tribological applications and nano safety and nano bio. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces.

INM – Leibniz Institute for New Materials, situated in Saarbruecken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 195 employees.

Weitere Informationen:

http://www.inm-gmbh.de/en/
http://www.leibniz-gemeinschaft.de/en/home/

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

More articles from Architecture and Construction:

nachricht Construction Impact Guide
18.05.2018 | Hochschule RheinMain

nachricht New, forward-looking report outlines research path to sustainable cities
24.01.2018 | National Science Foundation

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>