Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Corrosion - Slow Decay


"Corrosion" comes from Latin "corrodere": to gnaw something to pieces. This refers to the gradual destruction of a sub- stance due to the influence of other substances in the environment. Specialists at Empa take a close look at such processes and can find timely ways to prevent material failure due to corrosion – long before disasters such as those in Genoa occur.

The owner of a new Swiss industrial facility for the production of high-tech machinery was faced with a mystery: Kilometres of brand new stainless steel and aluminium pressure and cooling lines, worth several hundred thousand Swiss francs began to corrode while still under construction.

Corrosion - a theatre of scientific disciplines


What had attacked the metals so quickly?

Empa experts took a close look at the entire system: Were corrosive building materials involved, were cleaning agents to blame or had the wrong materials simply been selected? Finally, they found the "culprit" in form of a small bottle on a workshop truck:

Instead of using a professional leak tester, the assembly team had used a universal cleaning agent from the supermarket to locate leaks with the foam. But the supermarket agent contained acids and chlorides that corroded the metals.

New scene: The caretaker of a school in eastern Switzerland notices corrosion on the ceiling lamp fixtures in the gymnasium during cleaning work during the 2019 spring holidays. The school administration consulted the architect who had supervised the construction at the time. He informs Empa.

The isolation cladding at the ceiling is dismantled. Result: The entire ceiling construction shows massive safety-relevant corrosion damage. A few years earlier, during the renovation, the workers had drilled metal hooks through insulation plates made of phenolic resin foam, being unaware about the material properties. Water condensation caused the insulation to become damp. The phenolic resin foam then developed strong acids, which caused the fixing hooks to rust throughout.

Engineer and Natural Scientist – Two Hearts in One Chest

Is such failure analysis the typical activity of corrosion researchers? Are they something like the pathologists of the construction industry who dissect corpses of material and are always looking for perpetrators?

Not at all. Corrosion researchers are much more than that. They work at the interface between materials science and construction on the one hand, chemistry and physics on the other. With one leg, they are engineers, with the other natural scientists. Further- more, they not only look at past mistakes – they also think of the future.
An example: hydrogen.

The aimed energy revolution will make it necessary to convert large quantities of excess electricity into hydrogen in the next few years. This is one way to store solar and wind power from summer until winter. However, this not only requires storage tanks, but also pipes, valves, nozzles, transport vehicles and various accessories, such as counters for the quantity of gas supplied.

All this must be made of high-strength steel that can withstand hundreds of atmospheres of pressure and be fitted with seals that prevent leaks for years to come.

How- ever, hydrogen penetrates some steels and leads to embrittlement of the steel even at normal ambient temperatures. At temperatures above 300 degrees Celsius, the hydrogen also chemically reacts with the carbon content of the steel and deteriorates its quality. Empa is already researching the mechanisms of hydrogen embrittlement and developing materials for the energy supply of the future.

Tracing Corrosion with Microsensors

Fatally, hydrogen is not only produced intentionally – it can also be formed during corrosion and penetrate the material. Stored in minute quantities, it has the same destructive effect there:

It makes high-tech alloys brittle and fragile. In order to understand what happens and how it can be prevented, researchers have to zoom in closely on the microstructure of a material and investigate the chemical reactions in tiny areas affected by corrosion.

Empa has developed its own microsensors that can analyse surfaces of less than one hundred thousandth of a square millimetre and detect less than one millionth of a percent by weight of hydrogen. Using these methods, they investigate critical zones in components, such as welded seams, which become brittle due to atomic hydrogen and could ultimately fail.

Lars Jeurgens has been leading the Empa laboratory for "Joining Technologies and Corrosion" since 2012 and, together with his team, maintains a well-balanced mix of research and industry-related services. "We have graduates from ETH Zurich and EPFL in our team and use the concentrated knowledge of these two leading engineering schools," says Jeurgens.

He himself was born in the Netherlands and worked at the Max Planck Institute in Stuttgart for a long time. "Corrosion knows no boundaries – that's why we are very well connected internationally with experts from academia and industry and exchange the latest findings and methods. It is very valuable for us to share these experiences. Together, many complex problems can be solved more easily and quickly".

Many Things to do

In addition, there is truly enough to do for the corrosion specialists. The automotive and aircraft industries, for example, are increasingly working with composite materials consisting of a wide variety of materials. Little is known about their corrosion behaviour in harsh operating environments.

In many places, alloys of iron, titanium and aluminium are also used. They owe their corrosion resistance to a tiny, nanometre-thin passive oxide film on their surface, which requires special analytical methods just to detect it – only then the material surface can be tailored for its corrosion resistance.

Finally, the application of functional coatings to miniaturized electronic devices and components raises new corrosion issues. Lars Jeurgens gives the following example:

"If I make a turbine with a corrosion-resistant coating and a hundredth of a millimetre of material thickness is lost every year, this is unproblematic. However, the same coating on an electronic device that is only one hundredth of a millimetre thick would be completely degraded within a year. What appears corrosion-resistant on a large scale is far from being so on a micrometre scale. We therefore need new concepts for classifying the corrosion sensitivity of a material for a given application."

Corrosion – also in the Human Body

Sometimes corrosion occurs even where it is least suspected: In the middle of the human body, amidst its warm, apparently harmless body fluids. Empa's experts are investigating degradation by localized corrosion on materials such as stainless steel and titanium alloys, which are often used for implants as well as silicon, which is present in numerous new implanted components.

Little happens on large, smooth surfaces, but human body fluids can do a great deal in microscopically small crevices resulting from design or construction.

Recently, an Empa team was able to demonstrate the slow dissolution of a silicon-bonding layer in the laboratory. Between the titanium implant and the wear resistant coating a microscopic crevice may form. In the absence of oxygen, a very aggressive medium can develop there slowly, which can then destroy the silicon-bonding layer with the help of the body's own phosphorus compounds.

Using special probes, Empa researchers are also able to elucidate the local corrosion chemistry in such fine crevices and even accelerate the corrosion processes for experimental purposes. In this way, the expected service life of an implant can be predicted quite accurately even before the operation.

Corrosion research is enormously important in many real-life applications, and yet the work of the "pathologists of the engineering world" is often still underestimated. Lars Jeurgens and his colleagues are working hard to reinforce the importance of expertise in this field at universities and technical colleges.

"Corrosion assessment belongs on the checklist for every building project and every product development – not only at the end, but already during the drawing board phase," says Jeurgens. "Oftentimes, we are only asked for an analysis when the colour brochures for their product have already been printed. But at that point, we are often unable to do anything for our clients anymore."

Wissenschaftliche Ansprechpartner:

Dr. Lars Jeurgens
Head of Laboratory "Joining Technologies and Corrosion"
Phone +41 58 765 4053

Dr. Markus Faller
Chemical and Environmental Corrosion, Chemical Analytics of Corrosion Products, Corrosion-related Failure Analysis
Phone +41 58 765 4236

Dr. Martin Tuchschmid
Corrosion in Civil Engineering, Corrosion Management, Mobile Materials Analytics
Phone +41 58 765 4771

Dr. Patrik Schmutz
Corrosion research on light metals and medical products, Electrochemistry, Surface Analysis
Phone +41 58 765 4845

Dr. Thomas Suter
Hydrogen-embrittlement, Local Electrochemistry

Weitere Informationen:

Rainer Klose | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

More articles from Architecture and Construction:

nachricht City research draws on Formula 1 technology for the construction of skyscrapers
10.12.2019 | City University London

nachricht Living bridges: How traditional Indian building techniques can make modern cities more climate-friendly
18.11.2019 | Technische Universität München

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

Latest News

A new 'cool' blue

17.01.2020 | Life Sciences

EU-project SONAR: Better batteries for electricity from renewable energy sources

17.01.2020 | Power and Electrical Engineering

Neuromuscular organoid: It’s contracting!

17.01.2020 | Life Sciences

Science & Research
Overview of more VideoLinks >>>