Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comprehensive security of built structures

02.04.2012
How safe are buildings and tunnels in the event of fire, or if there’s an explosion or a plane crash? Are escape routes still accessible? Can people be rescued? Fraunhofer-Researchers and the Schüßler-Plan Group, an engineering consultancy, are together developing new concepts for the design and construction of bridges, tunnels and buildings.

On October 24, 2001 a devastating fire broke out in the St. Gotthard Road Tunnel in Switzerland, costing eleven people their lives. The main traffic route through the Swiss Alps remained closed for more than two months following the disaster whilst extensive renovation works were carried out.


How safe are high-rise buildings in the event of a plane crash? Special methods allow the calculation of exactly what the dynamic and structural loads are on buildings. © Fraunhofer EMI

Tunnels are not the only structures that can be destabilized by major incidents; buildings can be so damaged by explosives or fires that they collapse. How can multi-story buildings, bridges or nuclear power stations be made safe? Researchers at the Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institute, EMI are working alongside colleagues from the Schüßler-Plan Group, an engineering consultancy, to develop concepts for the comprehensive safety of buildings and structures. This means building contractors will in future be able to access the EMI researchers’ expert knowledge at an early stage in the planning process. The guidelines are being realized by engineers from Schüßler-Plan as part of an interactive collaboration.

Risk analysis for building contractors

“Our collaboration supports building contractors from the initial planning stages right through to completion,” says Dr. Alexander Stolz of the EMI in Freiburg. “We provide safety assurances during the planning phase by testing those loads that could potentially affect the structure, and we support contractors by furnishing them with a risk analysis report.” Scientists at the institute benefit from having on-site facilities to investigate the effects an explosion has on built structures, either through trials involving real explosives or using their large shock tube, powerful enough to test storey-high test specimen. „We use the finite element method, which is a numerical technique, to check the validity of the trial, and can predict any event scenario we want.

Schüßler-Plan then converts the results into engineering models. Building contractors can be certain that the dynamic and structural loads on buildings were calculated exactly. On top of this, we use the newest and most innovative protective and high-performance materials – materials that are both developed and qualified by us,“ he explains. The team also deals with retrofitting existing constructions such as airports, subway stations or underground parking lots. The experts do more than just help to make individual buildings safer, they also introduce safety-relevant aspects into urban planning. Simulation tools are used to calculate the incredibly complex way a pressure wave spreads through a built-up area. This enables different designs for urban structures to be judged on aspects concerning their relative safety – and improvements to be made accordingly – all whilst still in the planning stages.

Clear escape routes in the event of a plane crash

The collaboration between Schüßler-Plan und the EMI came about as part of the “Secure high-rise buildings” project. Markus Nöldgen, a former Schüßler-Plan employee and currently a professor at Cologne University of Applied Sciences, was prompted by the airplane attack on the World Trade Center in New York to consider the statics of high-rise buildings. The result was an ingenious framework construction built around an inner core of Ultra High Performance Concrete (UHPC), which ensures escape routes are kept clear and accessible in the event of an aircraft impact.

Dr. Ingo Müllers, head of department at Schüßler-Plan, welcomes the collaboration with colleagues from Fraunhofer. The engineering consultancy has more than 50 years of market experience. “We’re delighted to now be able to offer our clients an additional service,” he says. The purchase of a single contract buys the client the expertise of both scientists and engineers. In fact the cooperation extends so far that even the construction work itself is overseen by both partners. “We are a one-stop shop for customers, who only have to deal with a single contact – which is what the market demands – leaving all the necessary interactions to take place between experienced planners.”

| Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/april/comprehensive-security-of-built-structures.html

More articles from Architecture and Construction:

nachricht Proposed engineering method could help make buildings and bridges safer
22.01.2019 | Kanazawa University

nachricht Preserving soil quality in the long term
17.12.2018 | Schweizerischer Nationalfonds SNF

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>