Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When trees aren't 'green'

11.06.2015

Poor management led to overcrowded, older trees with little understory

Most of us don't consider forests a source of pollution. As natural bodies, they should be good for the environment. But a recent study in Japan shows that older cedar and cypress plantations are causing as much pollution as a poorly managed agricultural field or urban setting.


Testing equipment was used to measure nitrogen runoff.

Photo provided by Masaaki Chiwa

Masaaki Chiwa is the lead author of the study and an assistant professor at Kyushu University in Japan. According to Chiwa, the pollution is not the fault of the trees. It's the management of the plantations. In Japan, as in other countries, natural forests usually play a significant role in maintaining water quality.

"Many Japanese cedar and Japanese cypress plantations were established in the 1950s and 1960s--60% of those on private land," according to Chiwa. "These are not natural forests; they were meant for commercial purposes."

At the time of their planting, there was a short supply of these trees. However, an increase in imports of other woods has affected prices of Japanese cedar and cypress and led to the decline in active plantation management. The result was overcrowded land with aging trees and little to no undergrowth.

These older plantations are now a source of non-point nitrogen pollution according to the study. "Point" pollution comes from a single location; "non-point" pollution comes from a more diffuse area, such as these plantations. The nitrogen is flowing from the plantations during rainfalls or snowmelts into nearby bodies of water, causing algae blooms.

Where does all this nitrogen come from? Just like in a natural forest, needles fall from the aging trees and accumulate on the plantation floor. This is part of Mother Nature's way of recycling nutrients. Earthworms and soil microbes decompose the needles and return the nutrients to the soil. Younger growth nearby finishes the process and takes up the nutrients.

However, the age of the trees in these plantations means they are growing more slowly. They use fewer nutrients from the soil than younger trees, including nitrogen. Furthermore, crowding of the trees means there is too much shade to encourage new growth. This prevents a new, healthy understory that would use the nitrogen (and other nutrients) from the soil. Because the plants are not using the nutrients, the nutrients form runoff heading to the streams.

Since cedar and cypress plantations account for 30% of the forestland in Japan, the findings of this study are significant. Chiwa and his team would recommend that the plantation land be thinned and returned to a more natural forest state.

As part of another project, some landowners thinned plantations in 2012. To verify that the thinning will reduce runoff, Chiwa and his team are now measuring the amount of nitrogen flowing from the plantations. "We have been measuring water quality to evaluate the effect of forest thinning on water quality including nitrogen loss."

Hopefully, better management will bring these plantations back to a less-crowded, more natural state, and restore their ability to clean water rather than pollute it.

The study was published in the Journal of Environmental Quality.

Susan Fisk | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Microalgae food for honey bees
12.05.2020 | US Department of Agriculture - Agricultural Research Service

nachricht Global trade in soy has major implications for the climate
07.05.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

Im Focus: When proteins work together, but travel alone

Proteins, the microscopic “workhorses” that perform all the functions essential to life, are team players: in order to do their job, they often need to assemble into precise structures called protein complexes. These complexes, however, can be dynamic and short-lived, with proteins coming together but disbanding soon after.

In a new paper published in PNAS, researchers from the Max Planck Institute for Dynamics and Self-Organization, the University of Oxford, and Sorbonne...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New gravitational-wave model can bring neutron stars into even sharper focus

22.05.2020 | Physics and Astronomy

A replaceable, more efficient filter for N95 masks

22.05.2020 | Materials Sciences

Capturing the coordinated dance between electrons and nuclei in a light-excited molecule

22.05.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>