Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Well-watered citrus tested in cold-acclimating temperatures

03.02.2014
Findings could change traditional citrus winter irrigation strategies

Commercial citrus growers are often challenged by environmental conditions in winter, including low seasonal rainfall that is typical in many citrus growing regions.

Growers must rely on irrigation to sustain citrus crops through dry winters, so understanding how to determine citrus irrigation needs is critical for successful operations.

Authors of a study published in HortScience noted that current methods used to determine moisture needs for citrus are limited, in that they do not account for effects of cold acclimation on water requirements.

"Evidence suggests that at least some changes in plant water deficits occur as a result of cold temperatures and not dry soil," noted Robert Ebel, lead author of the study. "Changes in citrus water relations during cold acclimation and independent of soil moisture content are not well understood. Our study was conducted to characterize changes in plant relations of citrus plants with soil moisture carefully maintained at high levels to minimize drought stress."

Ebel and his colleagues conducted two experiments--the first in Immokalee, Florida, using potted sweet orange, and the second in Auburn, Alabama, using Satsuma mandarin trees. The citrus plants were exposed to progressively lower, non-freezing temperatures for 9 weeks. During the experiments trees were watered twice daily--three times on the days data were collected--to minimize drought stress.

Results of the experiments showed that soil moisture was higher for plants in the cold compared to plants in the warm chamber, and results showed that cold temperatures promoted stomatal closure, higher root resistance, lower stem water potential, lower transpiration, and lower stem water potential. Leaf relative water content was not different for cold-acclimated trees compared with the control trees. The key to minimizing drought stress, the scientists found, was carefully maintaining high soil moisture contents throughout the experiments, especially on the days that the measurements were performed.

"Our modern understanding of plant water relations has mainly evolved from studying growing plants at warm temperatures and in soils of varying moisture contents," Ebel explained. "However, this study demonstrates that those relationships are not consistent for citrus trees exposed to cold-acclimating temperatures."

The authors added that the study findings could have implications for commercial citrus growers who currently use traditional measures of determining irrigation scheduling during winter months.

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/content/48/10/1309.abstract

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Mike W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>